Hi, Flink acquires these 'Status_JVM_Memory' metrics through the MXBean library. According to MXBean document, non-heap is "the Java virtual machine manages memory other than the heap (referred as non-heap memory)". Not sure whether that is equivalent to the metaspace. If the '-XX:MaxMetaspaceSize', it should trigger metaspcae clean up when the limit is reached.
As for RocksDB, it mainly uses non-java memory. Heap, non-heap and direct memory could be considered as java memory (or at least allocated through the java process). That means, RocksDB is actually using the memory that is accounted in the total K8s container memory but not accounted in neither of java heap / non-heap / direct memory, which in your case the 1GB unaccounted. To leave more memory for RocksDB, you need to either configure more memory for the K8s containers, or configure less java memory through the config option 'taskmanager.heap.size'. The config option 'taskmanager.heap.size', despite the 'heap' in its key, also accounts for network memory (which uses direct buffers). Currently, memory configurations in Flink is quite complicated and confusing. The community is aware of this, and is planing for an overall improvement. To my understanding, once you set '-XX:MaxMetaspaceSize', there should be limits on heap, non-heap and direct memory in JVM. You should be able to find which part that requires memory more than the limit from the java OOM error message. If there is no java OOM but a K8s container OOM, then it should be non-java memory used by RocksDB. [1] https://docs.oracle.com/javase/8/docs/api/java/lang/management/MemoryMXBean.html Thank you~ Xintong Song On Tue, Jul 23, 2019 at 8:42 PM wvl <lee...@gmail.com> wrote: > Hi, > > We're running a relatively simply Flink application that uses a bunch of > state in RocksDB on Kubernetes. > During the course of development and going to production, we found that we > were often running into memory issues made apparent by Kubernetes OOMKilled > and Java OOM log events. > > In order to tackle these, we're trying to account for all the memory used > in the container, to allow proper tuning. > Metric-wise we have: > - container_memory_working_set_bytes = 6,5GB > - flink_taskmanager_Status_JVM_Memory_Heap_Max = 4,7GB > - flink_taskmanager_Status_JVM_Memory_NonHeap_Used = 325MB > - flink_taskmanager_Status_JVM_Memory_Direct_MemoryUsed = 500MB > > This is my understanding based on all the documentation and observations: > container_memory_working_set_bytes will be the total amount of memory in > use, disregarding OS page & block cache. > Heap will be heap. > NonHeap is mostly the metaspace. > Direct_Memory is mostly network buffers. > > Running the numbers I have 1 GB unaccounted for. I'm also uncertain as to > RocksDB. According to the docs RocksDB has a "Column Family Write Buffer" > where "You need to budget for 2 x your worst case memory use". > We have 17 ValueStateDescriptors (ignoring state for windows) which I'm > assuming corresponds to a "Column Family" in RockDB. Meaning our budget > should be around 2GB. > Is this accounted for in one of the flink_taskmanager metrics above? We've > also enabled various rocksdb metrics, but it's unclear where this Write > Buffer memory would be represented. > > Finally, we've seen that when our job has issues and is restarted rapidly, > NonHeap_Used grows from an initial 50Mb to 700MB, before our containers are > killed. We're assuming this is due > to no form of cleanup in the metaspace as classes get (re)loaded. > > These are our taskmanager JVM settings: -XX:+UseG1GC > -XX:MaxDirectMemorySize=1G -XX:+UnlockExperimentalVMOptions > -XX:+UseCGroupMemoryLimitForHeap -XX:MaxRAMFraction=2 > With flink config: > taskmanager.heap.size: 5000m > state.backend: rocksdb > state.backend.incremental: true > state.backend.rocksdb.timer-service.factory: ROCKSDB > > Based on what we've observed we're thinking about setting > -XX:MaxMetaspaceSize to a reasonable value, so that we at least get an > error message which can easily be traced back to the behavior we're seeing. > > Okay, all that said let's sum up what we're asking here: > - Is there any more insight into how memory is accounted for than our > current metrics? > - Which metric, if any accounts for RocksDB memory usage? > - What's going on with the Metaspace growth we're seeing during job > restarts, is there something we can do about this such as setting > -XX:MaxMetaspaceSize? > - Any other tips to improve reliability running in resource constrained > environments such as Kubernetes? > > Thanks, > > William > >