IPM - Understanding State

We are collecting some notes about the state mechanisms in IPM, based on Apache Flink.

® QOperator identity, shape, order, parallelism, off/on status.
® Backfilling state from a 3rd source

Statement Example
All operators MUST have a UID. Set
by ui d() .
dat aStream
. process(new
Count W ndowAver age())
. ui d(" Count W ndowAver age")
. keyBy("event")
.flat Map(new
Count W ndowAver ageMap())
. ui d(" Count W ndowAver ageMap")
.print().uid("print");

Operators CAN be merged and split

Before

dat aSt ream
. keyBy("event")
.flat Map(new
Count W ndowAver ageMap())
. ui d(" Count W ndowAver ageMap")
.print().uid("print");

dat aStream
. process(new

Count W ndowAver age())
. ui d(" Count W ndowAver age")
.print().uid("print2");

After

dat aStream
. process(new
Count W ndowAver age())
. ui d(" Count W ndowAver age")
. keyBy("event")
.flat Map(new
Count W ndowAver ageMap())
. ui d(" Count W ndowAver ageMap")
.print().uid("print");

Operators CANNOT share the same
uID.

Operator code body CAN change, as
long as it has the same UID. If the
shape of state changes, the new code
body needs to know how to handle the
transition from old to new state shape.

Order of operators and the exact
shape of input stream CAN change as
long as UID is kept.

dat aStream
. process(new
Count W ndowAver age())
. ui d(" Count W ndowAver age")
. keyBy("event")
.flat Map(new
Count W ndowAver ageMap())
. ui d(" Count W ndowAver ageMap")
.print().uid("print");

dat aStream

. process(new
Count W ndowAver age())

. ui d(" Count W ndowAver age") //
<<<<< U D conflict

.print().uid("print2");

You will see this log when the calculated operator body is not matching:

Coul d not find ExecutionJobVertex. |ncluding user-defined OperatorlDs in

search.

Before

dat aStream
. process(new Count W ndowAver age())
. ui d(" Count W ndowAver age")
. keyBy("event")
.fl at Map(new Count W ndowAver ageMap())
. ui d(" Count W ndowAver ageMap")
.print().uid("print");

After

dat aSt r eam
. keyBy("event")
.fl at Map(new Count W ndowAver ageMap())
. ui d(" Count W ndowAver ageMap")
. process(new Count W ndowAver age())
. ui d(" Count W ndowAver age")
.print().uid("print");

An operator CANNOT be disabled and
re-enabled with a savepoint taken
when it was disabled.

An operator CAN have different
parallelism in a later deployment and
still use the same savepoint from a
previous point.

Operators CAN be started from
different entry points and still
use/preserve their states.

Before

dat aStream
. keyBy("event")
.flat Map(new

Count W ndowAver ageMap())
. ui d(" Count W ndowAver ageMap")
. process(new

Count W ndowAver age())
. ui d(" Count W ndowAver age")
.print().uid("print");

After

dat aStream
. keyBy("event")
.flat Map(new

Count W ndowAver ageMap()) . set Paral |l el i sn(2)
. ui d(" Count W ndowAver ageMap")
. process(new

Count W ndowAver age()).setParal l el isn(1)
. ui d(" Count W ndowAver age")
.print().uid("print");

Before

./ bi n/ st andal one-j ob. sh start-foreground
--j ob-cl assnane
com not awor d. i pm kernel . Application

After

. I bi n/ st andal one-j ob. sh start-foreground
--j ob-cl assnane
com not awor d. i pm kernel . Appl i cati onNew

	IPM - Understanding State

