btw the max DAY window that is allowed is 99 days. After that it blows up here: https://github.com/apache/calcite/blob/master/core/src/main/java/org/apache/calcite/sql/SqlIntervalQualifier.java#L371
"SQL validation failed. From line 12, column 19 to line 12, column 36: Interval field value 100 exceeds precision of DAY(2) field" Resetting things based on larger windows (month, quarter, year) can be quite useful. Is there a practical limitation with Flink (state size blows up?) for not supporting such large windows? - Vinod On Thu, Mar 28, 2019 at 3:24 PM Vinod Mehra <vme...@lyft.com> wrote: > Dawid, > > After the above change my SQL (that uses TUMBLE(rowtime, INTERVAL '1' > MONTH)) fails with an error now: > > *(testing with org.apache.flink:flink-table_2.11:jar:1.7.1:compile now)* > org.apache.flink.table.api.TableException: *Only constant window > intervals with millisecond resolution are supported*. > at > org.apache.flink.table.plan.rules.datastream.DataStreamLogicalWindowAggregateRule.getOperandAsLong$1(DataStreamLogicalWindowAggregateRule.scala:73) > at > org.apache.flink.table.plan.rules.datastream.DataStreamLogicalWindowAggregateRule.translateWindowExpression(DataStreamLogicalWindowAggregateRule.scala:90) > at > org.apache.flink.table.plan.rules.common.LogicalWindowAggregateRule.onMatch(LogicalWindowAggregateRule.scala:65) > at > org.apache.calcite.plan.AbstractRelOptPlanner.fireRule(AbstractRelOptPlanner.java:315) > at org.apache.calcite.plan.hep.HepPlanner.applyRule(HepPlanner.java:556) > at org.apache.calcite.plan.hep.HepPlanner.applyRules(HepPlanner.java:415) > at > org.apache.calcite.plan.hep.HepPlanner.executeInstruction(HepPlanner.java:252) > at > org.apache.calcite.plan.hep.HepInstruction$RuleInstance.execute(HepInstruction.java:127) > at > org.apache.calcite.plan.hep.HepPlanner.executeProgram(HepPlanner.java:211) > at org.apache.calcite.plan.hep.HepPlanner.findBestExp(HepPlanner.java:198) > at > org.apache.flink.table.api.TableEnvironment.runHepPlanner(TableEnvironment.scala:360) > at > org.apache.flink.table.api.TableEnvironment.runHepPlannerSequentially(TableEnvironment.scala:326) > at > org.apache.flink.table.api.TableEnvironment.optimizeNormalizeLogicalPlan(TableEnvironment.scala:282) > at > org.apache.flink.table.api.StreamTableEnvironment.optimize(StreamTableEnvironment.scala:811) > at > org.apache.flink.table.api.StreamTableEnvironment.translate(StreamTableEnvironment.scala:860) > at > org.apache.flink.table.api.java.StreamTableEnvironment.toRetractStream(StreamTableEnvironment.scala:305) > at > org.apache.flink.table.api.java.StreamTableEnvironment.toRetractStream(StreamTableEnvironment.scala:248) > > The same exact syntax works fine for DAY intervals. For example: > TUMBLE(rowtime, INTERVAL '30' DAY) > > Is the same syntax for MONTH / YEAR intervals not supported? > TUMBLE(rowtime, INTERVAL '1' MONTH) > TUMBLE(rowtime, INTERVAL '1' YEAR) > > Thanks, > Vinod > > On Thu, Mar 28, 2019 at 12:46 PM Dawid Wysakowicz <dwysakow...@apache.org> > wrote: > >> It should be fixed since version 1.6.3. >> Best, >> Dawid >> >> >> [1] >> https://issues.apache.org/jira/browse/FLINK-11017?jql=project%20%3D%20FLINK%20AND%20text%20~%20Month >> >> >> On Thu, 28 Mar 2019, 19:32 Vinod Mehra, <vme...@lyft.com> wrote: >> >>> Hi All! >>> >>> We are using: org.apache.flink:flink-table_2.11:jar:1.4.2:compile >>> >>> SELECT >>> COALESCE(user_id, -1) AS user_id, >>> count(id) AS count_per_window, >>> sum(amount) AS charge_amount_per_window, >>> TUMBLE_START(rowtime, INTERVAL '2' YEAR) AS twindow_start, >>> TUMBLE_END(rowtime, INTERVAL '2' YEAR) AS twindow_end >>> FROM >>> event_charge_processed >>> WHERE capture=true >>> AND COALESCE(user_id, -1) <> -1 >>> GROUP BY >>> TUMBLE(rowtime, INTERVAL '2' YEAR), >>> COALESCE(user_id, -1) >>> >>> For '1' MONTH intervals it results in 1ms windows, 2 MONTH=2ms, 3 >>> MONTH=3ms …. 1 YEAR=12ms, 2 YEAR=24ms! Which results in incorrect >>> aggregations. >>> >>> I found that org.apache.calcite.sql.SqlLiteral#getValueAs() treats >>> MONTH/YEAR differently than DAY/HOUR etc. Perhaps the bug is somewhere >>> there (?). >>> >>> Is this a known issue? Has it been fixed in later versions? >>> >>> Thanks, >>> Vinod >>> >>>