Hi,
    We are converting one of our pig pipelines to flink using apache beam.
The pig pipeline reads two different data sets (R1 & R2)  from hdfs,
enriches them, joins them and dumps back to hdfs. The data set R1 is
skewed. In a sense, it has few keys with lot of records. When we converted
the pig pipeline to apache beam and ran it using flink on a production yarn
cluster, we got the following error

2018-11-21 16:52:25,307 ERROR org.apache.flink.runtime.operators.BatchTask
                - Error in task code:  GroupReduce (GroupReduce at
CoGBK/GBK) (25/100)
java.lang.RuntimeException: Emitting the record caused an I/O exception:
Failed to serialize element. Serialized size (> 1136656562 bytes) exceeds
JVM heap space
        at
org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:69)
        at
org.apache.flink.runtime.operators.util.metrics.CountingCollector.collect(CountingCollector.java:35)
        at
org.apache.beam.runners.flink.translation.functions.SortingFlinkCombineRunner.combine(SortingFlinkCombineRunner.java:140)
        at
org.apache.beam.runners.flink.translation.functions.FlinkReduceFunction.reduce(FlinkReduceFunction.java:85)
        at
org.apache.flink.api.java.operators.translation.PlanUnwrappingReduceGroupOperator$TupleUnwrappingNonCombinableGroupReducer.reduce(PlanUnwrappingReduceGroupOperator.java:111)
        at
org.apache.flink.runtime.operators.GroupReduceDriver.run(GroupReduceDriver.java:131)
        at
org.apache.flink.runtime.operators.BatchTask.run(BatchTask.java:503)
        at
org.apache.flink.runtime.operators.BatchTask.invoke(BatchTask.java:368)
        at org.apache.flink.runtime.taskmanager.Task.run(Task.java:711)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.IOException: Failed to serialize element. Serialized
size (> 1136656562 bytes) exceeds JVM heap space
        at
org.apache.flink.core.memory.DataOutputSerializer.resize(DataOutputSerializer.java:323)
        at
org.apache.flink.core.memory.DataOutputSerializer.write(DataOutputSerializer.java:149)
        at
org.apache.beam.runners.flink.translation.wrappers.DataOutputViewWrapper.write(DataOutputViewWrapper.java:48)
        at java.io.DataOutputStream.write(DataOutputStream.java:107)
        at
java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877)
        at
java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786)
        at
java.io.ObjectOutputStream.writeNonProxyDesc(ObjectOutputStream.java:1286)
        at
java.io.ObjectOutputStream.writeClassDesc(ObjectOutputStream.java:1231)
        at
java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1427)
        at
java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
        at
java.io.ObjectOutputStream.writeFatalException(ObjectOutputStream.java:1577)
        at
java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:351)
        at
org.apache.beam.sdk.coders.SerializableCoder.encode(SerializableCoder.java:170)
        at
org.apache.beam.sdk.coders.SerializableCoder.encode(SerializableCoder.java:50)
        at org.apache.beam.sdk.coders.Coder.encode(Coder.java:136)
        at
org.apache.beam.sdk.transforms.join.UnionCoder.encode(UnionCoder.java:71)
        at
org.apache.beam.sdk.transforms.join.UnionCoder.encode(UnionCoder.java:58)
        at
org.apache.beam.sdk.transforms.join.UnionCoder.encode(UnionCoder.java:32)
        at
org.apache.beam.sdk.coders.IterableLikeCoder.encode(IterableLikeCoder.java:98)
        at
org.apache.beam.sdk.coders.IterableLikeCoder.encode(IterableLikeCoder.java:60)
        at org.apache.beam.sdk.coders.Coder.encode(Coder.java:136)
        at org.apache.beam.sdk.coders.KvCoder.encode(KvCoder.java:71)
        at org.apache.beam.sdk.coders.KvCoder.encode(KvCoder.java:36)
        at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:529)
        at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:520)
        at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:480)
        at
org.apache.beam.runners.flink.translation.types.CoderTypeSerializer.serialize(CoderTypeSerializer.java:83)
        at
org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:54)
        at
org.apache.flink.runtime.io.network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:88)
        at
org.apache.flink.runtime.io.network.api.writer.RecordWriter.sendToTarget(RecordWriter.java:131)
        at
org.apache.flink.runtime.io.network.api.writer.RecordWriter.emit(RecordWriter.java:107)
        at
org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65)
        ... 9 more
Caused by: java.lang.OutOfMemoryError: Java heap space
        at
org.apache.flink.core.memory.DataOutputSerializer.resize(DataOutputSerializer.java:305)
        at
org.apache.flink.core.memory.DataOutputSerializer.write(DataOutputSerializer.java:149)
        at
org.apache.beam.runners.flink.translation.wrappers.DataOutputViewWrapper.write(DataOutputViewWrapper.java:48)
        at java.io.DataOutputStream.write(DataOutputStream.java:107)
        at
java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877)
        at
java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786)
        at
java.io.ObjectOutputStream.writeNonProxyDesc(ObjectOutputStream.java:1286)
        at
java.io.ObjectOutputStream.writeClassDesc(ObjectOutputStream.java:1231)
        at
java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1427)
        at
java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
        at
java.io.ObjectOutputStream.writeFatalException(ObjectOutputStream.java:1577)
        at
java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:351)
        at
org.apache.beam.sdk.coders.SerializableCoder.encode(SerializableCoder.java:170)
        at
org.apache.beam.sdk.coders.SerializableCoder.encode(SerializableCoder.java:50)
        at org.apache.beam.sdk.coders.Coder.encode(Coder.java:136)
        at
org.apache.beam.sdk.transforms.join.UnionCoder.encode(UnionCoder.java:71)
        at
org.apache.beam.sdk.transforms.join.UnionCoder.encode(UnionCoder.java:58)
        at
org.apache.beam.sdk.transforms.join.UnionCoder.encode(UnionCoder.java:32)
        at
org.apache.beam.sdk.coders.IterableLikeCoder.encode(IterableLikeCoder.java:98)
        at
org.apache.beam.sdk.coders.IterableLikeCoder.encode(IterableLikeCoder.java:60)
        at org.apache.beam.sdk.coders.Coder.encode(Coder.java:136)
        at org.apache.beam.sdk.coders.KvCoder.encode(KvCoder.java:71)
        at org.apache.beam.sdk.coders.KvCoder.encode(KvCoder.java:36)
        at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:529)
        at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:520)
        at
org.apache.beam.sdk.util.WindowedValue$FullWindowedValueCoder.encode(WindowedValue.java:480)
        at
org.apache.beam.runners.flink.translation.types.CoderTypeSerializer.serialize(CoderTypeSerializer.java:83)
        at
org.apache.flink.runtime.plugable.SerializationDelegate.write(SerializationDelegate.java:54)
        at
org.apache.flink.runtime.io.network.api.serialization.SpanningRecordSerializer.addRecord(SpanningRecordSerializer.java:88)
        at
org.apache.flink.runtime.io.network.api.writer.RecordWriter.sendToTarget(RecordWriter.java:131)
        at
org.apache.flink.runtime.io.network.api.writer.RecordWriter.emit(RecordWriter.java:107)
        at
org.apache.flink.runtime.operators.shipping.OutputCollector.collect(OutputCollector.java:65)



>From the exception view in flink job manager dashboard, we could see that
this is happening at a join operation.
*When I say R1 dataset is skewed, there are some keys with number of
occurrences as high as 8,000,000 , while most of the keys occur just once.*
*Dataset R2 has records with keys occurring at most once.*
Also, if we exclude such keys which has high number of occurrences, the
pipeline runs absolutely fine which proves it is happening due these few
keys only.

Hadoop version : 2.7.1
Beam verision : 2.8.0
Flink Runner version : 2.8.0

Let me know what more information should I fetch and post here in order for
you to help me resolve this.

Thanks,
Akshay

Reply via email to