Hi, You can use FlatMap instead of Map, and only collect valid elements.
Regards, Kien On 6/20/2018 7:57 AM, chrisr123 wrote:
First time I'm trying to get this to work so bear with me. I'm trying to learn checkpointing with Kafka and handling "bad" messages, restarting without losing state. Use Case: Use checkpointing. Read a stream of integers from Kafka, keep a running sum. If a "bad" Kafka message read, restart app, skip the "bad" message, keep state. My stream would something look like this: set1,5 set1,7 set1,foobar set1,6 I want my app to keep a running sum of the integers it has seen, and restart if it crashes without losing state. so my running sum would be: 5, 12, app crashes and restarts 18 However, I'm finding when my app restarts, it keeps reading the bad "foobar" message and doesnt get past it. Source code below. The mapper bombs when I try to parse "foobar" as an Integer. How can I modify app to get past "poison" message? env.enableCheckpointing(1000L); env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); env.getCheckpointConfig().setMaxConcurrentCheckpoints(1); env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500L); env.getCheckpointConfig().setCheckpointTimeout(10000); env.getCheckpointConfig().setMaxConcurrentCheckpoints(1); env.setStateBackend(new FsStateBackend("hdfs://mymachine:9000/flink/checkpoints")); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", BROKERS); properties.setProperty("zookeeper.connect", ZOOKEEPER_HOST); properties.setProperty("group.id", "consumerGroup1"); FlinkKafkaConsumer08 kafkaConsumer = new FlinkKafkaConsumer08<>(topicName, new SimpleStringSchema(), properties); DataStream<String> messageStream = env.addSource(kafkaConsumer); DataStream<Tuple2<String,Integer>> sums = messageStream .map(new NumberMapper()) .keyBy(0) .sum(1); sums.print(); private static class NumberMapper implements MapFunction<String,Tuple2<String,Integer>> { public Tuple2<String,Integer> map(String input) throws Exception { return parseData(input); } private Tuple2<String,Integer> parseData(String record) { String[] tokens = record.toLowerCase().split(","); // Get Key String key = tokens[0]; // Get Integer Value String integerValue = tokens[1]; System.out.println("Trying to Parse=" + integerValue); Integer value = Integer.parseInt(integerValue); // Build TupleBoundedOutOfOrdernessGenerator return new Tuple2<String,Integer>(key, value); } } -- Sent from: http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/