Hi Flink Team, I am seeing one of the out file for on my task manager is dumping lot of data. Not sure, why this is happening. All the data that is getting dumped in out file is ideally what *parsedInput *stream should be getting.
Here is the flink program that is executing: env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); env.setParallelism(1); DataStream<String> rawInput = env.addSource(new FlinkKafkaConsumer010<>( "event-ft", new SimpleStringSchema(), kafkaProps).setStartFromLatest()); DataStream<String> input2 = rawInput .map(new KafkaMsgReads()); DataStream<EventRec> parsedInput = input2 .flatMap(new Splitter()) .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<FTRecord>(Time.seconds(2)) { @Override public long extractTimestamp(EventRec record) { return record.getmTimeStamp()/TT_SCALE_FACTOR; } }).rebalance().map(new RawInputCounter()); parsedInput .keyBy("mflowHashLSB","mflowHashMSB") .window(SlidingEventTimeWindows.of(Time.milliseconds(1000),Time.milliseconds(950))) .allowedLateness(Time.seconds(1)) .apply(new CRWindow()); parsedInput.writeUsingOutputFormat(new DiscardingOutputFormat<>()); env.execute(); Here is the definition of *CRWindow* class: public static class CRWindow implements WindowFunction<FTRecord, FTFlow, Tuple, TimeWindow> { @Override public void apply(Tuple key, TimeWindow window, Iterable<FTRecord> ftRecords, Collector<FTFlow> collector) { return; } } Also, is there any elaborate documentation of windowing mechanism available? I am intereseted in using windowing with ability to push the events from one window to future window. Similar funcationality exist in storm for pushing an event to subsequent window. Thanks -Ashish