Could you send us the definition of the class or even better a small
code example on Github to reproduce your error?
If you are implementing a Flink job in Java you should not have any
org.apache.flink...scala.... import in your class file.
Regards,
Timo
Hi Timo
"You don't need to specify the type in .flatMap() explicitly. It will be
automatically extracted using the generic signature of DataDataConverter.”
It does not. That is the reason why I had to add it there
Regarding your error. Make sure that you don't mix up the API classes.
If you want to use the Java API you should not use
"org.apache.flink.streaming.api.scala.DataStream" but the Java one.
I rewrote the class in Java. Thats why I am so confused
Am 1/11/18 um 10:07 AM schrieb Timo Walther:
Hi Boris,
each API is designed language-specific so they might not always be the
same. Scala has better type extraction features and let you write code
very precisely. Java requires sometime more code to archieve the same.
You don't need to specify the type in .flatMap() explicitly. It will
be automatically extracted using the generic signature of
DataDataConverter.
Regarding your error. Make sure that you don't mix up the API classes.
If you want to use the Java API you should not use
"org.apache.flink.streaming.api.scala.DataStream" but the Java one.
Regards,
Timo
Am 1/11/18 um 5:13 AM schrieb Boris Lublinsky:
More questions
In Scala my DataProcessor is defined as
class DataProcessorKeyedextends CoProcessFunction[WineRecord, ModelToServe,
Double]with CheckpointedFunction {
And it is used as follows
val models = modelsStream.map(ModelToServe.fromByteArray(_))
.flatMap(BadDataHandler[ModelToServe])
.keyBy(_.dataType)
val data = dataStream.map(DataRecord.fromByteArray(_))
.flatMap(BadDataHandler[WineRecord])
.keyBy(_.dataType)
// Merge streams data
.connect(models)
.process(DataProcessorKeyed())
When I am doing the same thing in Java
public class DataProcessorKeyedextends CoProcessFunction<Winerecord.WineRecord,
ModelToServe, Double>implements CheckpointedFunction{
Which I am using as follows
// Read data from streams DataStream<Tuple2<String, ModelToServe>> models =
modelsStream
.flatMap(new ModelDataConverter(), new
TupleTypeInfo<>(BasicTypeInfo.STRING_TYPE_INFO,
TypeInformation.of(ModelToServe.class)))
.keyBy(0); DataStream<Tuple2<String, Winerecord.WineRecord>> data =
dataStream
.flatMap(new DataDataConverter(), new
TupleTypeInfo<>(BasicTypeInfo.STRING_TYPE_INFO,
TypeInformation.of(Winerecord.WineRecord.class)))
.keyBy(0); // Merge streams data
.connect(models)
.process(new DataProcessorKeyed());
I am getting an error
Error:(68, 17) java: no suitable method found for keyBy(int)
method
org.apache.flink.streaming.api.scala.DataStream.keyBy(scala.collection.Seq<java.lang.Object>)
is not applicable
(argument mismatch; int cannot be converted to
scala.collection.Seq<java.lang.Object>)
method
org.apache.flink.streaming.api.scala.DataStream.<K>keyBy(scala.Function1<org.apache.flink.api.java.tuple.Tuple2<java.lang.String,com.lightbend.model.ModelToServe>,K>,org.apache.flink.api.common.typeinfo.TypeInformation<K>)
is not applicable
(cannot infer type-variable(s) K
(actual and formal argument lists differ in length))
So it assumes key/value pairs for the coprocessor
Why is such difference between APIs?
Boris Lublinsky
FDP Architect
boris.lublin...@lightbend.com <mailto:boris.lublin...@lightbend.com>
https://www.lightbend.com/
On Jan 10, 2018, at 6:20 PM, Boris Lublinsky
<boris.lublin...@lightbend.com
<mailto:boris.lublin...@lightbend.com>> wrote:
I am trying to covert Scala code (which works fine) to Java
The sacral code is:
// create a Kafka consumers // Data val dataConsumer =new
FlinkKafkaConsumer010[Array[Byte]](
DATA_TOPIC, new ByteArraySchema, dataKafkaProps
)
// Model val modelConsumer =new FlinkKafkaConsumer010[Array[Byte]](
MODELS_TOPIC, new ByteArraySchema, modelKafkaProps
)
// Create input data streams val modelsStream = env.addSource(modelConsumer)
val dataStream = env.addSource(dataConsumer)
// Read data from streams val models =
modelsStream.map(ModelToServe.fromByteArray(_))
.flatMap(BadDataHandler[ModelToServe])
.keyBy(_.dataType)
val data = dataStream.map(DataRecord.fromByteArray(_))
.flatMap(BadDataHandler[WineRecord])
.keyBy(_.dataType)
Now I am trying to re write it to Java and fighting with the
requirement of providing types, where they should be obvious
// create a Kafka consumers // Data FlinkKafkaConsumer010<byte[]> dataConsumer =new
FlinkKafkaConsumer010<>(
ModelServingConfiguration.DATA_TOPIC, new ByteArraySchema(), dataKafkaProps); //
Model FlinkKafkaConsumer010<byte[]> modelConsumer =new FlinkKafkaConsumer010<>(
ModelServingConfiguration.MODELS_TOPIC, new ByteArraySchema(), modelKafkaProps);
// Create input data streams DataStream<byte[]> modelsStream =
env.addSource(modelConsumer, PrimitiveArrayTypeInfo.BYTE_PRIMITIVE_ARRAY_TYPE_INFO);
DataStream<byte[]> dataStream = env.addSource(dataConsumer,
PrimitiveArrayTypeInfo.BYTE_PRIMITIVE_ARRAY_TYPE_INFO);
// Read data from streams DataStream<Tuple2<String,ModelToServe>> models =
modelsStream
.flatMap(new ModelConverter(), new
TupleTypeInfo<>(BasicTypeInfo.STRING_TYPE_INFO,
TypeInformation.of(ModelToServe.class)));
Am I missing something similar toimport org.apache.flink.api.scala._
In java?
Now if this is an only way, Does this seems right?
Boris Lublinsky
FDP Architect
boris.lublin...@lightbend.com <mailto:boris.lublin...@lightbend.com>
https://www.lightbend.com/