I misuse the key selector. I checked the doc and found it must return
deterministic key, so using random is wrong, but I still could not
understand why it would cause oom.



2017-12-28 21:57 GMT+08:00 Jinhua Luo <luajit...@gmail.com>:
> It's very strange, when I change the key selector to use random key,
> the jvm reports oom.
>
>    .keyBy(new KeySelector<MyEvent, Integer>() {
>      public Integer getKey(MyEvent ev) { return
> ThreadLocalRandom.current().nextInt(1, 100);}
>    })
>
> Caused by: java.lang.OutOfMemoryError: Java heap space
>         at 
> com.esotericsoftware.kryo.util.IdentityMap.resize(IdentityMap.java:469)
>         at 
> com.esotericsoftware.kryo.util.IdentityMap.push(IdentityMap.java:230)
>         at 
> com.esotericsoftware.kryo.util.IdentityMap.put(IdentityMap.java:144)
>         at com.esotericsoftware.kryo.Kryo.reference(Kryo.java:818)
>         at com.esotericsoftware.kryo.Kryo.copy(Kryo.java:863)
>         at 
> com.esotericsoftware.kryo.serializers.MapSerializer.copy(MapSerializer.java:157)
>         at 
> com.esotericsoftware.kryo.serializers.MapSerializer.copy(MapSerializer.java:21)
>         at com.esotericsoftware.kryo.Kryo.copy(Kryo.java:862)
>         at 
> org.apache.flink.api.java.typeutils.runtime.kryo.KryoSerializer.copy(KryoSerializer.java:175)
>         at 
> org.apache.flink.api.java.typeutils.runtime.PojoSerializer.copy(PojoSerializer.java:239)
>         at 
> org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.pushToOperator(OperatorChain.java:547)
>         at 
> org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:524)
>         at 
> org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:504)
>         at 
> org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:831)
>         at 
> org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:809)
>         at 
> org.apache.flink.streaming.api.operators.TimestampedCollector.collect(TimestampedCollector.java:51)
>
> Could anybody explain the internal of keyby()?
>
> 2017-12-28 17:33 GMT+08:00 Ufuk Celebi <u...@apache.org>:
>> Hey Jinhua,
>>
>> On Thu, Dec 28, 2017 at 9:57 AM, Jinhua Luo <luajit...@gmail.com> wrote:
>>> The keyby() upon the field would generate unique key as the field
>>> value, so if the number of the uniqueness is huge, flink would have
>>> trouble both on cpu and memory. Is it considered in the design of
>>> flink?
>>
>> Yes, keyBy hash partitions the data across the nodes of your Flink
>> application and thus you can easily scale your application up if you
>> need more processing power.
>>
>> I'm not sure that this is the problem in your case though. Can you
>> provide some more details what you are doing exactly? Are you
>> aggregating by time (for the keyBy you mention no windowing, but then
>> you mention windowAll)? What kind of aggregation are you doing? If
>> possible, feel free to share some code.
>>
>>> Since windowsAll() could be set parallelism, so I try to use key
>>> selector to use field hash but not value, that I hope it would
>>> decrease the number of the keys, but the flink throws key out-of-range
>>> exception. How to use key selector in correct way?
>>
>> Can you paste the exact Exception you use? I think this might indicate
>> that you don't correctly extract the key from your record, e.g. you
>> extract a different key on sender and receiver.
>>
>> I'm sure we can figure this out after you provide more context. :-)
>>
>> – Ufuk

Reply via email to