Sorry, something went wrong with the code for the Writer. Here it is again:

import org.apache.avro.Schema
import org.apache.flink.streaming.connectors.fs.Writer
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.parquet.avro.AvroParquetWriter
import org.apache.parquet.hadoop.ParquetWriter
import org.apache.parquet.hadoop.metadata.CompressionCodecName

@SerialVersionUID(1L)
class MyAvroParquetWriter[T](schema: String) extends Writer[T] {

  @transient private var writer: ParquetWriter[T] = _

  override def open(fs: FileSystem, path: Path): Unit = {
    writer = AvroParquetWriter.builder[T](path)
      .withSchema(new Schema.Parser().parse(schema))
      .withCompressionCodec(CompressionCodecName.SNAPPY)
      .build()
  }

  override def write(element: T): Unit = writer.write(element)

  override def duplicate(): Writer[T] = new MyAvroParquetWriter[T](schema)

  override def close(): Unit = writer.close()

  override def getPos: Long = writer.getDataSize

  override def flush(): Long = writer.getDataSize

}

Using this library as dependency: "org.apache.parquet" % "parquet-avro" %
"1.8.1". We use this writer in a rolling sink and seems fine so far.

Cheers,

Bruno

On Wed, 18 Jan 2017 at 09:09 elmosca <brunoara...@gmail.com> wrote:

> Hi Biswajit,
>
> We use the following Writer for Parquet using Avro conversion (using
> Scala):
>
>
>
> Using this library as dependency: "org.apache.parquet" % "parquet-avro" %
> "1.8.1". We use this writer in a rolling sink and seems fine so far.
>
> Cheers,
>
> Bruno
>
>
>
> --
> View this message in context:
> http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Rolling-sink-parquet-Avro-output-tp11123p11127.html
> Sent from the Apache Flink User Mailing List archive. mailing list archive
> at Nabble.com.
>

Reply via email to