Hello,

I’ve worked around my problem by not using the HiveServer2 JDBC driver to read 
the ref table. Apparently, despite all the good options passed to the Statement 
object, it poorly handles RAM, since converting the table into textformat and 
directly reading the hdfs works without any problem and with a lot of free mem…

Greetings,
Arnaud

De : LINZ, Arnaud
Envoyé : jeudi 12 novembre 2015 17:48
À : 'user@flink.apache.org' <user@flink.apache.org>
Objet : Join Stream with big ref table

Hello,

I have to enrich a stream with a big reference table (11,000,000 rows). I 
cannot use “join” because I cannot window the stream ; so in the “open()” 
function of each mapper I read the content of the table and put it in a HashMap 
(stored on the heap).

11M rows is quite big but it should take less than 100Mb in RAM, so it’s 
supposed to be easy. However, I systematically run into a Java Out Of Memory 
error, even with huge 64Gb containers (5 slots / container).

Path, ID

Data Port

Last Heartbeat

All Slots

Free Slots

CPU Cores

Physical Memory

Free Memory

Flink Managed Memory

akka.tcp://flink@172.21.125.28:43653/user/taskmanager
4B4D0A725451E933C39E891AAE80B53B

41982

2015-11-12, 17:46:14

5

5

32

126.0 GB

46.0 GB

31.5 GB


I don’t clearly understand why this happens and how to fix it. Any clue?




________________________________

L'intégrité de ce message n'étant pas assurée sur internet, la société 
expéditrice ne peut être tenue responsable de son contenu ni de ses pièces 
jointes. Toute utilisation ou diffusion non autorisée est interdite. Si vous 
n'êtes pas destinataire de ce message, merci de le détruire et d'avertir 
l'expéditeur.

The integrity of this message cannot be guaranteed on the Internet. The company 
that sent this message cannot therefore be held liable for its content nor 
attachments. Any unauthorized use or dissemination is prohibited. If you are 
not the intended recipient of this message, then please delete it and notify 
the sender.

Reply via email to