Then you can do this. I handle millions of entries this way and it works
well if you are mostly interested in recent activity.

If you need to span all activity then you can use a separate table to
maintain the 'latest'. This table should also be sharded as entries will be
'hot'. Sharding will spread the heat and the tombstones (compaction load)
around the cluster.

-ml

-- put this in <file> and run using 'cqlsh -f <file>

DROP KEYSPACE latest;

CREATE KEYSPACE latest WITH replication = {
    'class': 'SimpleStrategy',
    'replication_factor' : 1
};

USE latest;

CREATE TABLE time_series (
    bucket_userid text, -- bucket is the beginning of a datetime span
concatenated with a shard designator
    pkid text,
    timeuuid text,
    colname text,
    PRIMARY KEY (bucket_userid, timeuuid)
);

-- the example table is using 15 minute bucket spans and 2 shards for
illustration (you would usually use more shards)
-- adjust these appropriately for your application

UPDATE time_series SET pkid = '1000', colname = 'Col-Name-1' where
bucket_userid = '2013-09-11T05:15-0_XYZ' AND timeuuid='200';
UPDATE time_series SET pkid = '1001', colname = 'Col-Name-2' where
bucket_userid = '2013-09-11T05:15-1_XYZ' AND timeuuid='201';
UPDATE time_series SET pkid = '1000', colname = 'Col-Name-3' where
bucket_userid = '2013-09-11T05:15-0_XYZ' AND timeuuid='202';
UPDATE time_series SET pkid = '1000', colname = 'Col-Name-4' where
bucket_userid = '2013-09-11T05:30-1_XYZ' AND timeuuid='203';
UPDATE time_series SET pkid = '1002', colname = 'Col-Name-5' where
bucket_userid = '2013-09-11T05:30-0_XYZ' AND timeuuid='204';

-- This query assumes that the 'current' span is 2013-09-11T05:30 and I am
interested in this span and the previous one.

SELECT * FROM time_series
WHERE bucket_userid in ( -- go back as many spans as you need to, all
shards in each span (cartesian product)
    '2013-09-11T05:15-0_XYZ',
    '2013-09-11T05:15-1_XYZ',
    '2013-09-11T05:30-0_XYZ',
    '2013-09-11T05:30-1_XYZ'
)
ORDER BY timeuuid DESC;

-- returns:
-- bucket_userid          | timeuuid | colname    | pkid
--------------------------+----------+------------+------
-- 2013-09-11T05:30-0_XYZ |      204 | Col-Name-5 | 1002
-- 2013-09-11T05:30-1_XYZ |      203 | Col-Name-4 | 1000
-- 2013-09-11T05:15-0_XYZ |      202 | Col-Name-3 | 1000
-- 2013-09-11T05:15-1_XYZ |      201 | Col-Name-2 | 1001
-- 2013-09-11T05:15-0_XYZ |      200 | Col-Name-1 | 1000

-- do a stable purge on pkid to get the result.


On Wed, Sep 11, 2013 at 1:01 AM, Ravikumar Govindarajan <
ravikumar.govindara...@gmail.com> wrote:

> Thanks Michael,
>
> But I cannot sort the rows in memory, as the number of columns will be
> quite huge.
>
> From the python script above:
>    select_stmt = "select * from time_series where userid = 'XYZ'"
>
> This would return me many hundreds of thousands of columns. I need to go
> in time-series order using ranges [Pagination queries].
>
>
> On Wed, Sep 11, 2013 at 7:06 AM, Laing, Michael <michael.la...@nytimes.com
> > wrote:
>
>> If you have set up the table as described in my previous message, you
>> could run this python snippet to return the desired result:
>>
>> #!/usr/bin/env python
>> # -*- coding: utf-8 -*-
>> import logging
>> logging.basicConfig()
>>
>> from operator import itemgetter
>>
>> import cassandra
>> from cassandra.cluster import Cluster
>> from cassandra.query import SimpleStatement
>>
>> cql_cluster = Cluster()
>> cql_session = cql_cluster.connect()
>> cql_session.set_keyspace('latest')
>>
>> select_stmt = "select * from time_series where userid = 'XYZ'"
>> query = SimpleStatement(select_stmt)
>> rows = cql_session.execute(query)
>>
>> results = []
>> for row in rows:
>>     max_time = max(row.colname.keys())
>>     results.append((row.userid, row.pkid, max_time,
>> row.colname[max_time]))
>>
>> sorted_results = sorted(results, key=itemgetter(2), reverse=True)
>> for result in sorted_results: print result
>>
>> # prints:
>>
>> # (u'XYZ', u'1002', u'204', u'Col-Name-5')
>> # (u'XYZ', u'1000', u'203', u'Col-Name-4')
>> # (u'XYZ', u'1001', u'201', u'Col-Name-2')
>>
>>
>>
>> On Tue, Sep 10, 2013 at 6:32 PM, Laing, Michael <
>> michael.la...@nytimes.com> wrote:
>>
>>> You could try this. C* doesn't do it all for you, but it will
>>> efficiently get you the right data.
>>>
>>> -ml
>>>
>>> -- put this in <file> and run using 'cqlsh -f <file>
>>>
>>> DROP KEYSPACE latest;
>>>
>>> CREATE KEYSPACE latest WITH replication = {
>>>     'class': 'SimpleStrategy',
>>>     'replication_factor' : 1
>>> };
>>>
>>> USE latest;
>>>
>>> CREATE TABLE time_series (
>>>     userid text,
>>>     pkid text,
>>>     colname map<text, text>,
>>>     PRIMARY KEY (userid, pkid)
>>> );
>>>
>>> UPDATE time_series SET colname = colname + {'200':'Col-Name-1'} WHERE
>>> userid = 'XYZ' AND pkid = '1000';
>>> UPDATE time_series SET colname = colname +
>>> {'201':'Col-Name-2'} WHERE userid = 'XYZ' AND pkid = '1001';
>>> UPDATE time_series SET colname = colname +
>>> {'202':'Col-Name-3'} WHERE userid = 'XYZ' AND pkid = '1000';
>>> UPDATE time_series SET colname = colname +
>>> {'203':'Col-Name-4'} WHERE userid = 'XYZ' AND pkid = '1000';
>>> UPDATE time_series SET colname = colname +
>>> {'204':'Col-Name-5'} WHERE userid = 'XYZ' AND pkid = '1002';
>>>
>>> SELECT * FROM time_series WHERE userid = 'XYZ';
>>>
>>> -- returns:
>>> -- userid | pkid | colname
>>>
>>> ----------+------+-----------------------------------------------------------------
>>> --    XYZ | 1000 | {'200': 'Col-Name-1', '202': 'Col-Name-3', '203':
>>> 'Col-Name-4'}
>>> --    XYZ | 1001 |                                           {'201':
>>> 'Col-Name-2'}
>>> --    XYZ | 1002 |                                           {'204':
>>> 'Col-Name-5'}
>>>
>>> -- use an app to pop off the latest key/value from the map for each row,
>>> then sort by key desc.
>>>
>>>
>>> On Tue, Sep 10, 2013 at 9:21 AM, Ravikumar Govindarajan <
>>> ravikumar.govindara...@gmail.com> wrote:
>>>
>>>> I have been faced with a problem of grouping composites on the
>>>> second-part.
>>>>
>>>> Lets say my CF contains this
>>>>
>>>>
>>>> TimeSeriesCF
>>>>                        key:                            UserID
>>>>                        composite-col-name:    TimeUUID:PKID
>>>>
>>>> Some sample data
>>>>
>>>> UserID = XYZ
>>>>                                  Time:PKID
>>>>                Col-Name1 = 200:1000
>>>>                Col-Name2 = 201:1001
>>>>                Col-Name3 = 202:1000
>>>>                Col-Name4 = 203:1000
>>>>                Col-Name5 = 204:1002
>>>>
>>>> Whenever a time-series query is issued, it should return the following
>>>> in time-desc order.
>>>>
>>>> UserID = XYZ
>>>>               Col-Name5 = 204:1002
>>>>               Col-Name4 = 203:1000
>>>>               Col-Name2 = 201:1001
>>>>
>>>> Is something like this possible in Cassandra? Is there a different way
>>>> to design and achieve the same objective?
>>>>
>>>> --
>>>> Ravi
>>>>
>>>>
>>>
>>>
>>
>

Reply via email to