I understand that this does not answer the question, but it may be worth pointing out regardless: if you control the writing, it may be more suitable to encode the columns and use a link list for the problem: encode each column by a number x and store the data as two columns. For example:
id, x0, x1, x2, ... 0, 0, 1, 0 1, 1, 1, 0 2, 1, 1, 1 becomes id, x 0, 1 // id=0,x1=1 1, 0 // id=1,x0=1 1, 1 // id=1,x1=1 2, 0 // id=2,x0=1 2, 1 // id=2,x1=1 2, 2 // id=2,x2=1 This approach is often used in complex (sparse) networks and can lead to a significantly lower number of stores and reads. Performance depends on the problem, so this is just an idea. Best, Jorge On Mon, Mar 1, 2021 at 2:08 PM jonathan mercier <jonathan.merc...@cnrgh.fr> wrote: > Thanks for the hint. > I do not saw a to_numpy method from Tabl object so I think I have to do > it manually in python > > something like: > > #### python3 > > import pyarrow.parquet as pq > import numpy as np > data = pq.read_table(dataset_path') > matrix = np.zeros((data.num_rows,data.num_columns),dtype=np.bool_) > for i,col in enumerate(data.columns): > matrix[:,i] = col > > > > > Le lundi 01 mars 2021 à 11:31 +0100, Jacek Pliszka a écrit : > > Other will probably give you better hints but > > > > You do not need to convert to Pandas. read in arrow and convert to > > numpy directly if numpy is what you want. > > > > BR, > > > > Jacek > > > > pon., 1 mar 2021 o 11:24 jonathan mercier <jonathan.merc...@cnrgh.fr> > > napisał(a): > > > > > > Dear, > > > > > > I try to studies 300 000 samples of SARS-Cov 2 with parquet/pyarrow > > > thus I own a table with 300 000 columns and around 45 000 row of > > > presence/absence (0/1). It is a file of ~150 Mo. > > > > > > I read this file like this: > > > > > > import pyarrow.parquet as pq > > > data = > > > pq.read_table(dataset_path).to_pandas().to_numpy().astype(numpy.bool_ > > > ) > > > > > > And this statement take 1 hour … > > > So is there a trick to speedup to load in memory those data ? > > > Is it possible to distribute the loading with a library such as ray ? > > > > > > thanks > > > > > > Best regards > > > > > > > > > -- > > > Researcher computational biology > > > PhD, Jonathan MERCIER > > > > > > Bioinformatics (LBI) > > > 2, rue Gaston > > > Crémieux > > > 91057 Evry Cedex > > > > > > > > > Tel :(+33)1 60 87 83 44 > > > Email :jonathan.merc...@cnrgh.fr > > > > > > > > > > > -- > Researcher computational biology > PhD, Jonathan MERCIER > > Bioinformatics (LBI) > 2, rue Gaston > Crémieux > 91057 Evry Cedex > > > Tel :(+33)1 60 87 83 44 > Email :jonathan.merc...@cnrgh.fr > > > >