最好先找到导致下游处理过慢的瓶颈算子,适当扩大一下并发。如果还不行,看下jstack的情况,可能需要调整逻辑。
Best regards, Weijie ssmq <374060...@qq.com.invalid> 于2023年1月31日周二 17:22写道: > 你可以测试不写入clickhouse是否还存在反压,如果不是因为写入瓶颈的话就从你的处理逻辑优化了 > > > 发件人: lxk > 发送时间: 2023年1月31日 15:16 > 收件人: user-zh@flink.apache.org > 主题: Flink SQL 如何优化以及处理反压 > > Flink版本:1.16.0 > 目前在使用Flink SQL进行多流关联,并写入Clickhouse中 > 具体代码如下: > select \ > header.id as id, \ > LAST_VALUE(header.order_status), \ > LAST_VALUE(header.customer_id), \ > LAST_VALUE(header.shop_id), \ > LAST_VALUE(header.parent_order_id), \ > LAST_VALUE(header.order_at), \ > LAST_VALUE(header.pay_at), \ > LAST_VALUE(header.channel_id), \ > LAST_VALUE(header.root_order_id), \ > LAST_VALUE(header.last_updated_at), \ > item.id as item_id, \ > LAST_VALUE(item.order_id) as order_id, \ > LAST_VALUE(item.row_num), \ > LAST_VALUE(item.goods_id), \ > LAST_VALUE(item.s_sku_code), \ > LAST_VALUE(item.qty), \ > LAST_VALUE(item.p_paid_sub_amt), \ > LAST_VALUE(item.p_sp_sub_amt), \ > LAST_VALUE(item.bom_type), \ > LAST_VALUE(item.last_updated_at) as item_last_updated_at, \ > LAST_VALUE(item.display_qty), \ > LAST_VALUE(delivery.del_type), \ > LAST_VALUE(delivery.time_slot_type), \ > LAST_VALUE(delivery.time_slot_date), \ > LAST_VALUE(delivery.time_slot_time_from), \ > LAST_VALUE(delivery.time_slot_time_to), \ > LAST_VALUE(delivery.sku_delivery_type), \ > LAST_VALUE(delivery.last_updated_at) as del_last_updated_at, \ > LAST_VALUE(promotion.id) as promo_id, \ > LAST_VALUE(promotion.order_item_id), \ > LAST_VALUE(promotion.p_promo_amt), \ > LAST_VALUE(promotion.promotion_category), \ > LAST_VALUE(promotion.promo_type), \ > LAST_VALUE(promotion.promo_sub_type), \ > LAST_VALUE(promotion.last_updated_at) as promo_last_updated_at, \ > LAST_VALUE(promotion.promotion_cost) \ > from \ > item \ > join \ > header \ > on item.order_id = header.id \ > left join \ > delivery \ > on item.order_id = delivery.order_id \ > left join \ > promotion \ > on item.id =promotion.order_item_id \ > group by header.id,item.id > 在Flink WEB UI 上发现程序反压很严重,而且时不时挂掉: > https://pic.imgdb.cn/item/63d8bebbface21e9ef3c92fe.jpg > > 参考了京东的一篇文章 > https://flink-learning.org.cn/article/detail/1e86b8b38faaeefd5ed7f70858aa40bc > ,对相关参数做了调整,但是发现有些功能在Flink 1.16中已经做了相关优化了,同时加了这些参数之后对程序没有起到任何优化的作用。 > > conf.setString("table.exec.mini-batch.enabled", "true"); > conf.setString("table.exec.mini-batch.allow-latency", "15 s"); > conf.setString("table.exec.mini-batch.size", "5000"); > conf.setString("table.exec.state.ttl", "86400 s"); > conf.setString("table.exec.disabled-operators", "NestedLoopJoin"); > conf.setString("table.optimizer.join.broadcast-threshold", "-1"); > conf.setString("table.optimizer.multiple-input-enabled", "true"); > conf.setString("table.exec.shuffle-mode", "POINTWISE_EDGES_PIPELINED"); > conf.setString("taskmanager.network.sort-shuffle.min-parallelism", "8"); > 想请教下,针对Flink SQL如何处理反压,同时有什么其他的优化手段? > > > >