Apologies if you are receiving multiple copies

==Call for Papers: NIPS 2008 Workshop on Cost-Sensitive Learning==
http://www.cs.iastate.edu/~oksayakh/cslworkshop_nips2008.html


Description and background
------------------------
The goal of cost-sensitive learning is to minimize data acquisition costs while 
maximizing the accuracy of the learner/predictor.

Many fields in machine learning attempt to solve cost-sensitive learning with 
strong simplifying assumptions. For example, in semi-supervised learning, 
class-labels are assumed to be expensive and features are implicitly assumed to 
have zero cost. In active learning, labels are again assumed to be expensive; 
however the learner may ask an oracle to reveal a label for unlabeled data for 
selected examples. Active feature acquisition assumes that obtaining features 
is expensive (but typically all features are assumed to be equally expensive), 
and the learner identifies instances for which complete information is most 
informative to classify a particular test sample. Inductive transfer learning 
and domain adaptation methods assume that training data for a particular task 
is expensive or but other data from other domains may be cheaper (although 
relative costs are usually not explicitly modeled). Cascaded classifier 
architectures are primarily designed in order to reduce the cost of acquiring 
features to classify a sample (a sample may be classified the moment the 
available data is sufficient to provide sufficient classification confidence, 
without waiting for all features to be obtained).

There is an important but neglected common thread linking all of these 
different research communities. In particular, all these learning methods are 
motivated by the need to minimize the cost of data acquisition in many 
different application domains such as computer-aided medical diagnosis, 
computational linguistics, computational biology, and computer vision. Although 
all of these areas have felt the need for a principled solution to the problem, 
the partial solutions that have tried to solve the problem (eg semi-supervised 
learning, active learning, multi-task inductive transfer etc) rarely model the 
cost explicitly, and very little effort has been expended on modeling 
application specific characteristics.

Recently to some papers have started modeling the acquisition costs directly, 
but there is a lot of scope for theoretically rigorous work on this topic. It 
is also important to explicitly model the requirements from real world 
application communities and to bridge it with the work on theory/algorithms.

Goals
---------------
The goal of the workshop is to bring together researchers interested in the 
application of cost-sensitive learning (computer vision, natural language 
processing, computer-aided diagnostics, computational biology) with researchers 
interested in theory & algorithms for learning when data acquisition is costly.

The main aim is to focus attention on a practically important problem where 
practitioners have long sought theoretically sound algorithms but which has not 
been sufficiently addressed in the literature. A secondary goal is to bring 
together ideas from semi-supervised learning, active learning, feature 
acquisition, inductive transfer learning and other areas, in order that there 
may be more exchange of ideas across these (extremely active) communities.


Topics of Interest
------------------------
We welcome both novel theory/algorithms and papers that highlight open problems 
and challenges in real-world applications which call for cost sensitive 
learning. Submissions on following topics are particularly encouraged:

Algorithms/Theory:
-active learning
-semi-supervised learning
-transfer learning
-reinforcement learning
-domain adaptation,
-cascaded classifier learning
-...and related.

Applications which call for cost-sensitive learning:
-computer vision
-computational linguistics
-natural language processing
-computer-aided diagnosis
-differential medical diagnosis
-...and others.


Paper submission
------------------------
We welcome papers of up to 8 pages in the NIPS 2008 format. The accepted papers 
will be available for downloading from the workshop website. Accepted papers 
will be either presented as a talk or poster (with poster spotlight). Papers 
should be emailed to the organizers at [EMAIL PROTECTED] Please indicate 
whether you only wish to present a poster.


Important Dates
------------------------
Deadline for submissions:     October 17, 2008
Notification of acceptance:   November 7, 2008
Workshop date:        December 13, 2008

Organizers
------------------------
Balaji Krishnapuram (Siemens Medical Solutions USA)
Shipeng Yu (Siemens Medical Solutions USA)
Oksana Yakhnenko (Iowa State University)
R. Bharat Rao (Siemens Medical Solutions USA)
Lawrence Carin (Duke University)

Invited Speakers
------------------------
John Shawe-Taylor (University College, London)
Volker Tresp (University of Munich)

Program Committee
------------------------
Chiru Bhattacharya (IISc, Bangalore)
Rich Caruana (Cornell)
Mario Figueiredo (IST, Portugal)
Yves Grandvalet (UTC, France)
Yan Liu (IBM)
Prem Melville (IBM)
Sunita Sarawagi (IIT Bombay)
Fei Sha (USC & Yahoo research)
Volker Tresp (Siemens)
Kai Yu (NEC Research)
Ulf Brefeld (Technische Universitaet, Berlin)
Steffen Bickel (Max Planck Institute of Computer Science)
Vikas Sindhwani (IBM)
Johannes Fürnkranz (Darmstadt University)
John Shawe-Taylor (University College, London)
Sanjoy Dasgupta (University of California, San Diego)
Steven Abney (University of Michigan)
_______________________________________________
uai mailing list
uai@ENGR.ORST.EDU
https://secure.engr.oregonstate.edu/mailman/listinfo/uai

Reply via email to