Hi On Sat, Feb 10, 2024 at 11:48 PM Arseniy Krasnov <avkras...@salutedevices.com> wrote: > > Basic support for Amlogic Meson NAND controller on AXG. This version > works at only first EDO mode. > > Based on Linux version 6.7.0-rc4. > > Signed-off-by: Arseniy Krasnov <avkras...@salutedevices.com> > --- > Changelog: > v1 -> v2: > * Update commit message with 'Based on Linux ...'. > * Add Linux driver author to .c file header. > * Add comment for defines 'NFC_DEFAULT_BUS_CYCLE' and > 'NFC_DEFAULT_BUS_TIMING'. > * Use 'dev_read_addr_index_ptr()' instead of 'dev_read_addr()'. > v2 -> v3: > * Update commit message about EDO mode limitation. > * Fix scrambling bit value in CMDRWGEN macro. > * Add scrambling support for reading. > > drivers/mtd/nand/raw/Kconfig | 9 + > drivers/mtd/nand/raw/Makefile | 1 + > drivers/mtd/nand/raw/meson_nand.c | 1248 +++++++++++++++++++++++++++++ > 3 files changed, 1258 insertions(+) > create mode 100644 drivers/mtd/nand/raw/meson_nand.c > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > index 46a1460746..e946305ccc 100644 > --- a/drivers/mtd/nand/raw/Kconfig > +++ b/drivers/mtd/nand/raw/Kconfig > @@ -479,6 +479,15 @@ config NAND_ARASAN > controller. This uses the hardware ECC for read and > write operations. > > +config NAND_MESON > + bool "Meson NAND support" > + select SYS_NAND_SELF_INIT > + depends on DM_MTD && ARCH_MESON > + imply CMD_NAND > + help > + This enables Nand driver support for Meson raw NAND flash > + controller. > + > config NAND_MXC > bool "MXC NAND support" > depends on CPU_ARM926EJS || CPU_ARM1136 || MX5 > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > index add2b4cf65..5b4efd52c9 100644 > --- a/drivers/mtd/nand/raw/Makefile > +++ b/drivers/mtd/nand/raw/Makefile > @@ -61,6 +61,7 @@ obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o > obj-$(CONFIG_NAND_LPC32XX_MLC) += lpc32xx_nand_mlc.o > obj-$(CONFIG_NAND_LPC32XX_SLC) += lpc32xx_nand_slc.o > obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o > +obj-$(CONFIG_NAND_MESON) += meson_nand.o > obj-$(CONFIG_NAND_MXC) += mxc_nand.o > obj-$(CONFIG_NAND_MXS) += mxs_nand.o > obj-$(CONFIG_NAND_MXS_DT) += mxs_nand_dt.o > diff --git a/drivers/mtd/nand/raw/meson_nand.c > b/drivers/mtd/nand/raw/meson_nand.c > new file mode 100644 > index 0000000000..5d411c4594 > --- /dev/null > +++ b/drivers/mtd/nand/raw/meson_nand.c > @@ -0,0 +1,1248 @@ > +// SPDX-License-Identifier: (GPL-2.0+ OR MIT) > +/* > + * Amlogic Meson Nand Flash Controller Driver > + * > + * Copyright (c) 2018 Amlogic, inc. > + * Author: Liang Yang <liang.y...@amlogic.com> > + * > + * Copyright (c) 2023 SaluteDevices, Inc. > + * Author: Arseniy Krasnov <avkras...@salutedevices.com> > + */ > + > +#include <common.h> > +#include <nand.h> > +#include <asm/io.h> > +#include <dm.h> > +#include <dm/device_compat.h> > +#include <dm/ofnode.h> > +#include <dm/uclass.h> > +#include <linux/bug.h> > +#include <linux/clk-provider.h> > +#include <linux/delay.h> > +#include <linux/dma-mapping.h> > +#include <linux/iopoll.h> > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/rawnand.h> > +#include <linux/sizes.h> > + > +#define NFC_CMD_IDLE (0xc << 14) > +#define NFC_CMD_CLE (0x5 << 14) > +#define NFC_CMD_ALE (0x6 << 14) > +#define NFC_CMD_DWR (0x4 << 14) > +#define NFC_CMD_DRD (0x8 << 14) > +#define NFC_CMD_ADL ((0 << 16) | (3 << 20)) > +#define NFC_CMD_ADH ((1 << 16) | (3 << 20)) > +#define NFC_CMD_AIL ((2 << 16) | (3 << 20)) > +#define NFC_CMD_AIH ((3 << 16) | (3 << 20)) > +#define NFC_CMD_SEED ((8 << 16) | (3 << 20)) > +#define NFC_CMD_M2N ((0 << 17) | (2 << 20)) > +#define NFC_CMD_N2M ((1 << 17) | (2 << 20)) > +#define NFC_CMD_RB BIT(20) > +#define NFC_CMD_SCRAMBLER_ENABLE BIT(19) > +#define NFC_CMD_SCRAMBLER_DISABLE 0 > +#define NFC_CMD_SHORTMODE_DISABLE 0 > +#define NFC_CMD_RB_INT BIT(14) > +#define NFC_CMD_RB_INT_NO_PIN ((0xb << 10) | BIT(18) | BIT(16)) > + > +#define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) > + > +#define NFC_REG_CMD 0x00 > +#define NFC_REG_CFG 0x04 > +#define NFC_REG_DADR 0x08 > +#define NFC_REG_IADR 0x0c > +#define NFC_REG_BUF 0x10 > +#define NFC_REG_INFO 0x14 > +#define NFC_REG_DC 0x18 > +#define NFC_REG_ADR 0x1c > +#define NFC_REG_DL 0x20 > +#define NFC_REG_DH 0x24 > +#define NFC_REG_CADR 0x28 > +#define NFC_REG_SADR 0x2c > +#define NFC_REG_PINS 0x30 > +#define NFC_REG_VER 0x38 > + > +#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ > + ( \ > + (cmd_dir) | \ > + (ran) | \ > + ((bch) << 14) | \ > + ((short_mode) << 13) | \ > + (((page_size) & 0x7f) << 6) | \ > + ((pages) & 0x3f) \ > + ) > + > +#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) > +#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & > 0xffff)) > +#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) > +#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & > 0xffff)) > + > +#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) > + > +#define ECC_CHECK_RETURN_FF -1 > + > +#define NAND_CE0 (0xe << 10) > +#define NAND_CE1 (0xd << 10) > + > +#define DMA_BUSY_TIMEOUT_US 1000000 > +#define CMD_DRAIN_TIMEOUT_US 1000 > +#define ECC_POLL_TIMEOUT_US 15 > + > +#define MAX_CE_NUM 2 > + > +/* eMMC clock register, misc control */ > +#define CLK_SELECT_NAND BIT(31) > +#define CLK_ALWAYS_ON_NAND BIT(24) > +#define CLK_ENABLE_VALUE 0x245 > + > +#define DIRREAD 1 > +#define DIRWRITE 0 > + > +#define ECC_PARITY_BCH8_512B 14 > +#define ECC_COMPLETE BIT(31) > +#define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) > +#define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0)) > +#define ECC_UNCORRECTABLE 0x3f > + > +#define PER_INFO_BYTE 8 > + > +#define NFC_SEND_CMD(host, cmd) \ > + (writel((cmd), (host)->reg_base + NFC_REG_CMD)) > + > +#define NFC_GET_CMD(host) \ > + (readl((host)->reg_base + NFC_REG_CMD)) > + > +#define NFC_CMDFIFO_SIZE(host) ((NFC_GET_CMD((host)) >> 22) & GENMASK(4, 0)) > + > +#define NFC_CMD_MAKE_IDLE(ce, delay) ((ce) | NFC_CMD_IDLE | ((delay) & > 0x3ff)) > +#define NFC_CMD_MAKE_DRD(ce, size) ((ce) | NFC_CMD_DRD | (size)) > +#define NFC_CMD_MAKE_DWR(ce, data) ((ce) | NFC_CMD_DWR | ((data) & 0xff)) > +#define NFC_CMD_MAKE_CLE(ce, cmd_val) ((ce) | NFC_CMD_CLE | ((cmd_val) & > 0xff)) > +#define NFC_CMD_MAKE_ALE(ce, addr) ((ce) | NFC_CMD_ALE | ((addr) & 0xff)) > + > +#define NAND_TWB_TIME_CYCLE 10 > + > +#define NFC_DEV_READY_TICK_MAX 5000 > + > +/* Both values are recommended by vendor, as the most > + * tested with almost all SLC NAND flash. Second value > + * could be calculated dynamically from timing parameters, > + * but we need both values for initial start of the NAND > + * controller (e.g. before NAND subsystem processes timings), > + * so use hardcoded constants. > + */ > +#define NFC_DEFAULT_BUS_CYCLE 6 > +#define NFC_DEFAULT_BUS_TIMING 7 > + > +#define NFC_SEED_OFFSET 0xc2 > +#define NFC_SEED_MASK 0x7fff > + > +#define DMA_ADDR_ALIGN 8 > + > +struct meson_nfc_nand_chip { > + struct list_head node; > + struct nand_chip nand; > + > + u32 bch_mode; > + u8 *data_buf; > + __le64 *info_buf; > + u32 nsels; > + u8 sels[]; > +}; > + > +struct meson_nfc_param { > + u32 chip_select; > + u32 rb_select; > +}; > + > +struct meson_nfc { > + void __iomem *reg_base; > + void __iomem *reg_clk; > + struct list_head chips; > + struct meson_nfc_param param; > + struct udevice *dev; > + dma_addr_t daddr; > + dma_addr_t iaddr; > + u32 data_bytes; > + u32 info_bytes; > + u64 assigned_cs; > +}; > + > +struct meson_nand_ecc { > + u32 bch; > + u32 strength; > + u32 size; > +}; > + > +enum { > + NFC_ECC_BCH8_512 = 1, > + NFC_ECC_BCH8_1K, > + NFC_ECC_BCH24_1K, > + NFC_ECC_BCH30_1K, > + NFC_ECC_BCH40_1K, > + NFC_ECC_BCH50_1K, > + NFC_ECC_BCH60_1K, > +}; > + > +#define MESON_ECC_DATA(b, s, sz) { .bch = (b), .strength = (s), .size = (sz) > } > + > +static struct meson_nand_ecc meson_ecc[] = { > + MESON_ECC_DATA(NFC_ECC_BCH8_512, 8, 512), > + MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8, 1024), > +}; > + > +static int meson_nand_calc_ecc_bytes(int step_size, int strength) > +{ > + int ecc_bytes; > + > + if (step_size == 512 && strength == 8) > + return ECC_PARITY_BCH8_512B; > + > + ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); > + ecc_bytes = ALIGN(ecc_bytes, 2); > + > + return ecc_bytes; > +} > + > +static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) > +{ > + return container_of(nand, struct meson_nfc_nand_chip, nand); > +} > + > +static void meson_nfc_nand_select_chip(struct mtd_info *mtd, int chip) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + > + nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; > +} > + > +static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) > +{ > + writel(NFC_CMD_MAKE_IDLE(nfc->param.chip_select, time), > + nfc->reg_base + NFC_REG_CMD); > +} > + > +static void meson_nfc_cmd_seed(const struct meson_nfc *nfc, u32 seed) > +{ > + writel(NFC_CMD_SEED | (NFC_SEED_OFFSET + (seed & NFC_SEED_MASK)), > + nfc->reg_base + NFC_REG_CMD); > +} > + > +static void meson_nfc_cmd_access(struct nand_chip *nand, bool raw, bool dir, > + int scrambler) > +{ > + struct mtd_info *mtd = nand_to_mtd(nand); > + const struct meson_nfc *nfc = > nand_get_controller_data(mtd_to_nand(mtd)); > + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + u32 bch = meson_chip->bch_mode, cmd; > + int len = mtd->writesize, pagesize, pages; > + > + pagesize = nand->ecc.size; > + > + if (raw) { > + len = mtd->writesize + mtd->oobsize; > + cmd = len | scrambler | DMA_DIR(dir); > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + return; > + } > + > + pages = len / nand->ecc.size; > + > + cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch, > + NFC_CMD_SHORTMODE_DISABLE, pagesize, pages); > + > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > +} > + > +static void meson_nfc_drain_cmd(struct meson_nfc *nfc) > +{ > + /* > + * Insert two commands to make sure all valid commands are finished. > + * > + * The Nand flash controller is designed as two stages pipleline - > + * a) fetch and b) execute. > + * There might be cases when the driver see command queue is empty, > + * but the Nand flash controller still has two commands buffered, > + * one is fetched into NFC request queue (ready to run), and another > + * is actively executing. So pushing 2 "IDLE" commands guarantees that > + * the pipeline is emptied. > + */ > + meson_nfc_cmd_idle(nfc, 0); > + meson_nfc_cmd_idle(nfc, 0); > +} > + > +static int meson_nfc_wait_cmd_finish(const struct meson_nfc *nfc, > + unsigned int timeout_us) > +{ > + u32 cmd_size = 0; > + > + /* wait cmd fifo is empty */ > + return readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, > cmd_size, > + !NFC_CMD_GET_SIZE(cmd_size), > + timeout_us); > +} > + > +static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) > +{ > + meson_nfc_drain_cmd(nfc); > + > + return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT_US); > +} > + > +static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i) > +{ > + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + int len; > + > + len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; > + > + return meson_chip->data_buf + len; > +} > + > +static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i) > +{ > + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + int len, temp; > + > + temp = nand->ecc.size + nand->ecc.bytes; > + len = (temp + 2) * i; > + > + return meson_chip->data_buf + len; > +} > + > +static void meson_nfc_get_data_oob(struct nand_chip *nand, > + u8 *buf, u8 *oobbuf) > +{ > + u8 *dsrc, *osrc; > + int i, oob_len; > + > + oob_len = nand->ecc.bytes + 2; > + for (i = 0; i < nand->ecc.steps; i++) { > + if (buf) { > + dsrc = meson_nfc_data_ptr(nand, i); > + memcpy(buf, dsrc, nand->ecc.size); > + buf += nand->ecc.size; > + } > + > + if (oobbuf) { > + osrc = meson_nfc_oob_ptr(nand, i); > + memcpy(oobbuf, osrc, oob_len); > + oobbuf += oob_len; > + } > + } > +} > + > +static void meson_nfc_set_data_oob(struct nand_chip *nand, > + const u8 *buf, u8 *oobbuf) > +{ > + int i, oob_len; > + > + oob_len = nand->ecc.bytes + 2; > + for (i = 0; i < nand->ecc.steps; i++) { > + u8 *osrc; > + > + if (buf) { > + u8 *dsrc; > + > + dsrc = meson_nfc_data_ptr(nand, i); > + memcpy(dsrc, buf, nand->ecc.size); > + buf += nand->ecc.size; > + } > + > + osrc = meson_nfc_oob_ptr(nand, i); > + memcpy(osrc, oobbuf, oob_len); > + oobbuf += oob_len; > + } > +} > + > +static void meson_nfc_set_user_byte(struct nand_chip *nand, const u8 > *oob_buf) > +{ > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + int i, count; > + > + for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + > nand->ecc.bytes)) { > + __le64 *info = &meson_chip->info_buf[i]; > + > + *info |= oob_buf[count]; > + *info |= oob_buf[count + 1] << 8; > + } > +} > + > +static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf) > +{ > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + int i, count; > + > + for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + > nand->ecc.bytes)) { > + const __le64 *info = &meson_chip->info_buf[i]; > + > + oob_buf[count] = *info; > + oob_buf[count + 1] = *info >> 8; > + } > +} > + > +static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips, > + u64 *correct_bitmap) > +{ > + struct mtd_info *mtd = nand_to_mtd(nand); > + int ret = 0, i; > + > + for (i = 0; i < nand->ecc.steps; i++) { > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + const __le64 *info = &meson_chip->info_buf[i]; > + > + if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) { > + mtd->ecc_stats.corrected += ECC_ERR_CNT(*info); > + *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info)); > + *correct_bitmap |= BIT_ULL(i); > + continue; > + } > + > + if ((nand->options & NAND_NEED_SCRAMBLING) && > + ECC_ZERO_CNT(*info) < nand->ecc.strength) { > + mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info); > + *bitflips = max_t(u32, *bitflips, > + ECC_ZERO_CNT(*info)); > + ret = ECC_CHECK_RETURN_FF; > + } else { > + ret = -EBADMSG; > + } > + } > + > + return ret; > +} > + > +static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf, > + int datalen, void *infobuf, int infolen, > + enum dma_data_direction dir) > +{ > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + int ret; > + u32 cmd; > + > + nfc->daddr = dma_map_single(databuf, datalen, DMA_BIDIRECTIONAL); > + ret = dma_mapping_error(nfc->dev, nfc->daddr); > + if (ret) > + return ret; > + > + cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr); > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + > + cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr); > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + > + if (infobuf) { > + nfc->iaddr = dma_map_single(infobuf, infolen, > + DMA_BIDIRECTIONAL); > + ret = dma_mapping_error(nfc->dev, nfc->iaddr); > + if (ret) { > + dma_unmap_single(nfc->daddr, datalen, dir); > + return ret; > + } > + > + nfc->info_bytes = infolen; > + cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr); > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + > + cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr); > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + } > + > + return 0; > +} > + > +static void meson_nfc_dma_buffer_release(struct nand_chip *nand, > + int datalen, int infolen, > + enum dma_data_direction dir) > +{ > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + > + dma_unmap_single(nfc->daddr, datalen, dir); > + > + if (infolen) { > + dma_unmap_single(nfc->iaddr, infolen, dir); > + nfc->info_bytes = 0; > + } > +} > + > +static void meson_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int size) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + u8 *dma_buf; > + int ret; > + u32 cmd; > + > + if ((uintptr_t)buf % DMA_ADDR_ALIGN) { > + unsigned long tmp_addr; > + > + dma_buf = dma_alloc_coherent(size, &tmp_addr); > + if (!dma_buf) > + return; > + } else { > + dma_buf = buf; > + } > + > + ret = meson_nfc_dma_buffer_setup(nand, dma_buf, size, > meson_chip->info_buf, > + PER_INFO_BYTE, DMA_FROM_DEVICE); > + if (ret) { > + pr_err("Failed to setup DMA buffer %p/%p\n", dma_buf, > + meson_chip->info_buf); > + return; > + } > + > + cmd = NFC_CMD_N2M | size; > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + > + meson_nfc_drain_cmd(nfc); > + meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US); > + meson_nfc_dma_buffer_release(nand, size, PER_INFO_BYTE, > DMA_FROM_DEVICE); > + > + if (buf != dma_buf) { > + memcpy(buf, dma_buf, size); > + dma_free_coherent(dma_buf); > + } > +} > + > +static void meson_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int > size) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + u8 *dma_buf; > + int ret; > + u32 cmd; > + > + if ((uintptr_t)buf % DMA_ADDR_ALIGN) { > + unsigned long tmp_addr; > + > + dma_buf = dma_alloc_coherent(size, &tmp_addr); > + if (!dma_buf) > + return; > + > + memcpy(dma_buf, buf, size); > + } else { > + dma_buf = (u8 *)buf; > + } > + > + ret = meson_nfc_dma_buffer_setup(nand, (void *)dma_buf, size, NULL, > + 0, DMA_TO_DEVICE); > + if (ret) { > + pr_err("Failed to setup DMA buffer %p\n", dma_buf); > + return; > + } > + > + cmd = NFC_CMD_M2N | size; > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + > + meson_nfc_drain_cmd(nfc); > + meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US); > + meson_nfc_dma_buffer_release(nand, size, 0, DMA_TO_DEVICE); > + > + if (buf != dma_buf) > + dma_free_coherent(dma_buf); > +} > + > +static int meson_nfc_write_page_sub(struct nand_chip *nand, > + int page, bool raw) > +{ > + const struct mtd_info *mtd = nand_to_mtd(nand); > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + int data_len, info_len; > + int ret; > + u32 cmd; > + > + data_len = mtd->writesize + mtd->oobsize; > + info_len = nand->ecc.steps * PER_INFO_BYTE; > + > + ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, > + data_len, meson_chip->info_buf, > + info_len, DMA_TO_DEVICE); > + if (ret) { > + pr_err("Failed to setup DMA buffer %p/%p\n", > + meson_chip->data_buf, meson_chip->info_buf); > + return ret; > + } > + > + if (nand->options & NAND_NEED_SCRAMBLING) { > + meson_nfc_cmd_seed(nfc, page); > + meson_nfc_cmd_access(nand, raw, DIRWRITE, > + NFC_CMD_SCRAMBLER_ENABLE); > + } else { > + meson_nfc_cmd_access(nand, raw, DIRWRITE, > + NFC_CMD_SCRAMBLER_DISABLE); > + } > + > + cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG; > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > + > + meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE); > + > + return 0; > +} > + > +static int meson_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip > *chip, > + const u8 *buf, int oob_required, int page) > +{ > + meson_nfc_set_data_oob(chip, buf, oob_required ? chip->oob_poi : > NULL); > + > + return meson_nfc_write_page_sub(chip, page, true); > +} > + > +static int meson_nfc_write_page_hwecc(struct mtd_info *mtd, struct nand_chip > *chip, > + const u8 *buf, int oob_required, int > page) > +{ > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip); > + > + if (buf) > + memcpy(meson_chip->data_buf, buf, mtd->writesize); > + > + memset(meson_chip->info_buf, 0, chip->ecc.steps * PER_INFO_BYTE); > + > + if (oob_required) > + meson_nfc_set_user_byte(chip, chip->oob_poi); > + > + return meson_nfc_write_page_sub(chip, page, false); > +} > + > +static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc, > + struct nand_chip *nand, bool raw) > +{ > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + __le64 *info; > + u32 neccpages; > + int ret; > + > + neccpages = raw ? 1 : nand->ecc.steps; > + info = &meson_chip->info_buf[neccpages - 1]; > + do { > + udelay(ECC_POLL_TIMEOUT_US); > + /* info is updated by nfc dma engine*/ > + rmb(); > + invalidate_dcache_range(nfc->iaddr, nfc->iaddr + > nfc->info_bytes); > + ret = *info & ECC_COMPLETE; > + } while (!ret); > +} > + > +static int meson_nfc_read_page_sub(struct nand_chip *nand, > + int page, bool raw) > +{ > + struct mtd_info *mtd = nand_to_mtd(nand); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + u32 data_len, info_len; > + int ret; > + > + data_len = mtd->writesize + mtd->oobsize; > + info_len = nand->ecc.steps * PER_INFO_BYTE; > + > + ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, data_len, > + meson_chip->info_buf, info_len, > + DMA_FROM_DEVICE); > + if (ret) > + return ret; > + > + if (nand->options & NAND_NEED_SCRAMBLING) { > + meson_nfc_cmd_seed(nfc, page); > + meson_nfc_cmd_access(nand, raw, DIRREAD, > + NFC_CMD_SCRAMBLER_ENABLE); > + } else { > + meson_nfc_cmd_access(nand, raw, DIRREAD, > + NFC_CMD_SCRAMBLER_DISABLE); > + } > + > + meson_nfc_wait_dma_finish(nfc); > + meson_nfc_check_ecc_pages_valid(nfc, nand, raw); > + > + meson_nfc_dma_buffer_release(nand, data_len, info_len, > + DMA_FROM_DEVICE); > + > + return 0; > +} > + > +static int meson_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip > *chip, > + u8 *buf, int oob_required, int page) > +{ > + int ret; > + > + ret = meson_nfc_read_page_sub(chip, page, true); > + if (ret) > + return ret; > + > + meson_nfc_get_data_oob(chip, buf, oob_required ? chip->oob_poi : > NULL); > + > + return 0; > +} > + > +static int meson_nfc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip > *chip, > + u8 *buf, int oob_required, int page) > +{ > + const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip); > + u64 correct_bitmap = 0; > + u32 bitflips = 0; > + int ret; > + > + ret = meson_nfc_read_page_sub(chip, page, false); > + if (ret) > + return ret; > + > + if (oob_required) > + meson_nfc_get_user_byte(chip, chip->oob_poi); > + > + ret = meson_nfc_ecc_correct(chip, &bitflips, &correct_bitmap); > + > + if (ret == ECC_CHECK_RETURN_FF) { > + if (buf) > + memset(buf, 0xff, mtd->writesize); > + > + if (oob_required) > + memset(chip->oob_poi, 0xff, mtd->oobsize); > + } else if (ret < 0) { > + struct nand_ecc_ctrl *ecc; > + int i; > + > + if ((chip->options & NAND_NEED_SCRAMBLING) || !buf) { > + mtd->ecc_stats.failed++; > + return bitflips; > + } > + > + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); > + > + ret = meson_nfc_read_page_raw(mtd, chip, buf, 1, page); > + if (ret) > + return ret; > + > + ecc = &chip->ecc; > + > + for (i = 0; i < chip->ecc.steps ; i++) { > + u8 *data = buf + i * ecc->size; > + u8 *oob = chip->oob_poi + i * (ecc->bytes + 2); > + > + if (correct_bitmap & BIT_ULL(i)) > + continue; > + > + ret = nand_check_erased_ecc_chunk(data, ecc->size, > + oob, ecc->bytes + 2, > + NULL, 0, > + ecc->strength); > + if (ret < 0) { > + mtd->ecc_stats.failed++; > + } else { > + mtd->ecc_stats.corrected += ret; > + bitflips = max_t(u32, bitflips, ret); > + } > + } > + } else if (buf && buf != meson_chip->data_buf) { > + memcpy(buf, meson_chip->data_buf, mtd->writesize); > + } > + > + return bitflips; > +} > + > +static int meson_nfc_read_oob_raw(struct mtd_info *mtd, struct nand_chip > *chip, > + int page) > +{ > + int ret; > + > + ret = nand_read_page_op(chip, page, 0, NULL, 0); > + if (ret) > + return ret; > + > + return meson_nfc_read_page_raw(mtd, chip, NULL, 1, page); > +} > + > +static int meson_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + int ret; > + > + ret = nand_read_page_op(chip, page, 0, NULL, 0); > + if (ret) > + return ret; > + > + return meson_nfc_read_page_hwecc(mtd, chip, NULL, 1, page); > +} > + > +static int meson_nfc_write_oob_raw(struct mtd_info *mtd, struct nand_chip > *chip, > + int page) > +{ > + int ret; > + > + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); > + if (ret) > + return ret; > + > + ret = meson_nfc_write_page_raw(mtd, chip, NULL, 1, page); > + if (ret) > + return ret; > + > + return nand_prog_page_end_op(chip); > +} > + > +static int meson_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + int ret; > + > + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); > + if (ret) > + return ret; > + > + ret = meson_nfc_write_page_hwecc(mtd, chip, NULL, 1, page); > + if (ret) > + return ret; > + > + return nand_prog_page_end_op(chip); > +} > + > +static void meson_nfc_nand_cmd_function(struct mtd_info *mtd, unsigned int > command, > + int column, int page_addr) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + > + chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); > + > + if (column != -1 || page_addr != -1) { > + int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; > + > + /* Serially input address */ > + if (column != -1) { > + /* Adjust columns for 16 bit buswidth */ > + if (chip->options & NAND_BUSWIDTH_16 && > + !nand_opcode_8bits(command)) > + column >>= 1; > + > + chip->cmd_ctrl(mtd, column, ctrl); > + ctrl &= ~NAND_CTRL_CHANGE; > + /* Only output a single addr cycle for 8bits > + * opcodes. > + */ > + if (!nand_opcode_8bits(command)) > + chip->cmd_ctrl(mtd, column >> 8, ctrl); > + } > + > + if (page_addr != -1) { > + chip->cmd_ctrl(mtd, page_addr, ctrl); > + chip->cmd_ctrl(mtd, page_addr >> 8, NAND_NCE | > + NAND_ALE); > + /* One more address cycle for devices > 128MiB */ > + if (chip->chipsize > SZ_128M) > + chip->cmd_ctrl(mtd, page_addr >> 16, > + NAND_NCE | NAND_ALE); > + } > + > + switch (command) { > + case NAND_CMD_READ0: > + chip->cmd_ctrl(mtd, NAND_CMD_READSTART, > + NAND_NCE | NAND_CLE | > NAND_CTRL_CHANGE); > + fallthrough; > + case NAND_CMD_PARAM: > + nand_wait_ready(mtd); > + nand_exit_status_op(chip); > + } > + } > +} > + > +static void meson_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int > ctrl) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + > + if (cmd == NAND_CMD_NONE) > + return; > + > + if (ctrl & NAND_CLE) > + cmd = NFC_CMD_MAKE_CLE(nfc->param.chip_select, cmd); > + else > + cmd = NFC_CMD_MAKE_ALE(nfc->param.chip_select, cmd); > + > + writel(cmd, nfc->reg_base + NFC_REG_CMD); > +} > + > +static void meson_nfc_wait_cmd_fifo(struct meson_nfc *nfc) > +{ > + while ((NFC_GET_CMD(nfc) >> 22) & GENMASK(4, 0)) > + ; > +} > + > +static u8 meson_nfc_nand_read_byte(struct mtd_info *mtd) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + > + writel(NFC_CMD_MAKE_DRD(nfc->param.chip_select, 0), nfc->reg_base + > NFC_REG_CMD); > + > + meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE); > + meson_nfc_cmd_idle(nfc, 0); > + meson_nfc_cmd_idle(nfc, 0); > + > + meson_nfc_wait_cmd_fifo(nfc); > + > + return readl(nfc->reg_base + NFC_REG_BUF); > +} > + > +static void meson_nfc_nand_write_byte(struct mtd_info *mtd, u8 val) > +{ > + struct nand_chip *nand = mtd_to_nand(mtd); > + struct meson_nfc *nfc = nand_get_controller_data(nand); > + > + meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE); > + > + writel(NFC_CMD_MAKE_DWR(nfc->param.chip_select, val), nfc->reg_base + > NFC_REG_CMD); > + > + meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE); > + meson_nfc_cmd_idle(nfc, 0); > + meson_nfc_cmd_idle(nfc, 0); > + > + meson_nfc_wait_cmd_fifo(nfc); > +} > + > +static int meson_nfc_dev_ready(struct mtd_info *mtd) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + unsigned int time_out_cnt = 0; > + > + chip->select_chip(mtd, 0); > + > + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); > + > + do { > + int status; > + > + status = (int)chip->read_byte(mtd); > + if (status & NAND_STATUS_READY) > + break; > + } while (time_out_cnt++ < NFC_DEV_READY_TICK_MAX); > + > + return time_out_cnt != NFC_DEV_READY_TICK_MAX; > +} > + > +static int meson_chip_buffer_init(struct nand_chip *nand) > +{ > + const struct mtd_info *mtd = nand_to_mtd(nand); > + struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); > + u32 page_bytes, info_bytes, nsectors; > + unsigned long tmp_addr; > + > + nsectors = mtd->writesize / nand->ecc.size; > + > + page_bytes = mtd->writesize + mtd->oobsize; > + info_bytes = nsectors * PER_INFO_BYTE; > + > + meson_chip->data_buf = dma_alloc_coherent(page_bytes, &tmp_addr); > + if (!meson_chip->data_buf) > + return -ENOMEM; > + > + meson_chip->info_buf = dma_alloc_coherent(info_bytes, &tmp_addr); > + if (!meson_chip->info_buf) { > + dma_free_coherent(meson_chip->data_buf); > + return -ENOMEM; > + } > + > + return 0; > +} > + > +static const int axg_stepinfo_strengths[] = { 8 }; > +static const struct nand_ecc_step_info axg_stepinfo_1024 = { > + .stepsize = 1024, > + .strengths = axg_stepinfo_strengths, > + .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) > +}; > + > +static const struct nand_ecc_step_info axg_stepinfo_512 = { > + .stepsize = 512, > + .strengths = axg_stepinfo_strengths, > + .nstrengths = ARRAY_SIZE(axg_stepinfo_strengths) > +}; > + > +static const struct nand_ecc_step_info axg_stepinfo[] = { axg_stepinfo_1024, > axg_stepinfo_512 }; > + > +static const struct nand_ecc_caps meson_axg_ecc_caps = { > + .stepinfos = axg_stepinfo, > + .nstepinfos = ARRAY_SIZE(axg_stepinfo), > + .calc_ecc_bytes = meson_nand_calc_ecc_bytes, > +}; > + > +/* > + * OOB layout: > + * > + * For ECC with 512 bytes step size: > + * 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB > + * 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC > + * 0x20: > + * 0x30: > + * > + * For ECC with 1024 bytes step size: > + * 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB > + * 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC > + * 0x20: AA AA DD DD DD DD DD DD DD DD DD DD DD DD DD DD > + * 0x30: AA AA EE EE EE EE EE EE EE EE EE EE EE EE EE EE > + * > + * AA - user bytes. > + * BB, CC, DD, EE - ECC code bytes for each step. > + */ > +static struct nand_ecclayout nand_oob; > + > +static void meson_nfc_init_nand_oob(struct nand_chip *nand) > +{ > + int section_size = 2 + nand->ecc.bytes; > + int i; > + int k; > + > + nand_oob.eccbytes = nand->ecc.steps * nand->ecc.bytes; > + k = 0; > + > + for (i = 0; i < nand->ecc.steps; i++) { > + int j; > + > + for (j = 0; j < nand->ecc.bytes; j++) > + nand_oob.eccpos[k++] = (i * section_size) + 2 + j; > + > + nand_oob.oobfree[i].offset = (i * section_size); > + nand_oob.oobfree[i].length = 2; > + } > + > + nand_oob.oobavail = 2 * nand->ecc.steps; > + nand->ecc.layout = &nand_oob; > +} > + > +static int meson_nfc_init_ecc(struct nand_chip *nand, ofnode node) > +{ > + const struct mtd_info *mtd = nand_to_mtd(nand); > + int ret; > + int i; > + > + ret = nand_check_ecc_caps(nand, &meson_axg_ecc_caps, mtd->oobsize - > 2); > + if (ret) > + return ret; > + > + for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) { > + if (meson_ecc[i].strength == nand->ecc.strength && > + meson_ecc[i].size == nand->ecc.size) { > + struct meson_nfc_nand_chip *meson_chip = > to_meson_nand(nand); > + > + nand->ecc.steps = mtd->writesize / nand->ecc.size; > + meson_chip->bch_mode = meson_ecc[i].bch; > + > + meson_nfc_init_nand_oob(nand); > + > + return 0; > + } > + } > + > + return -EINVAL; > +} > + > +static int meson_nfc_nand_chip_init(struct udevice *dev, struct meson_nfc > *nfc, > + ofnode node) > +{ > + struct meson_nfc_nand_chip *meson_chip; > + struct nand_chip *nand; > + struct mtd_info *mtd; > + u32 cs[MAX_CE_NUM]; > + u32 nsels; > + int ret; > + int i; > + > + if (!ofnode_get_property(node, "reg", &nsels)) { > + dev_err(dev, "\"reg\" property is not found\n"); > + return -ENODEV; > + } > + > + nsels /= sizeof(u32); > + if (nsels >= MAX_CE_NUM) { > + dev_err(dev, "invalid size of CS array, max is %d\n", > + MAX_CE_NUM); > + return -EINVAL; > + } > + > + ret = ofnode_read_u32_array(node, "reg", cs, nsels); > + if (ret < 0) { > + dev_err(dev, "failed to read \"reg\" property\n"); > + return ret; > + } > + > + for (i = 0; i < nsels; i++) { > + if (test_and_set_bit(cs[i], &nfc->assigned_cs)) { > + dev_err(dev, "CS %d already assigned\n", cs[i]); > + return -EINVAL; > + } > + } > + > + meson_chip = malloc(sizeof(*meson_chip) + nsels * > sizeof(meson_chip->sels[0])); > + if (!meson_chip) { > + dev_err(dev, "failed to allocate memory for chip\n"); > + return -ENOMEM; > + } > + > + meson_chip->nsels = nsels; > + nand = &meson_chip->nand; > + > + nand->flash_node = node; > + nand_set_controller_data(nand, nfc); > + /* Set the driver entry points for MTD */ > + nand->cmdfunc = meson_nfc_nand_cmd_function; > + nand->cmd_ctrl = meson_nfc_cmd_ctrl; > + nand->select_chip = meson_nfc_nand_select_chip; > + nand->read_byte = meson_nfc_nand_read_byte; > + nand->write_byte = meson_nfc_nand_write_byte; > + nand->dev_ready = meson_nfc_dev_ready; > + > + /* Buffer read/write routines */ > + nand->read_buf = meson_nfc_read_buf; > + nand->write_buf = meson_nfc_write_buf; > + nand->options |= NAND_NO_SUBPAGE_WRITE; > + > + nand->ecc.mode = NAND_ECC_HW; > + nand->ecc.hwctl = NULL; > + nand->ecc.read_page = meson_nfc_read_page_hwecc; > + nand->ecc.write_page = meson_nfc_write_page_hwecc; > + nand->ecc.read_page_raw = meson_nfc_read_page_raw; > + nand->ecc.write_page_raw = meson_nfc_write_page_raw; > + > + nand->ecc.read_oob = meson_nfc_read_oob; > + nand->ecc.write_oob = meson_nfc_write_oob; > + nand->ecc.read_oob_raw = meson_nfc_read_oob_raw; > + nand->ecc.write_oob_raw = meson_nfc_write_oob_raw; > + > + nand->ecc.algo = NAND_ECC_BCH; > + > + mtd = nand_to_mtd(nand); > + > + ret = nand_scan_ident(mtd, 1, NULL); > + if (ret) { > + dev_err(dev, "'nand_scan_ident()' failed: %d\n", ret); > + goto err_chip_free; > + } > + > + ret = meson_nfc_init_ecc(nand, node); > + if (ret) { > + dev_err(dev, "failed to init ECC settings: %d\n", ret); > + goto err_chip_free; > + } > + > + ret = meson_chip_buffer_init(nand); > + if (ret) { > + dev_err(dev, "failed to init DMA buffers: %d\n", ret); > + goto err_chip_free; > + } > + > + /* 'nand_scan_tail()' needs ECC parameters to be already > + * set and correct. > + */ > + ret = nand_scan_tail(mtd); > + if (ret) { > + dev_err(dev, "'nand_scan_tail()' failed: %d\n", ret); > + goto err_chip_buf_free; > + } > + > + ret = nand_register(0, mtd); > + if (ret) { > + dev_err(dev, "'nand_register()' failed: %d\n", ret); > + goto err_chip_buf_free; > + } > + > + list_add_tail(&meson_chip->node, &nfc->chips); > + > + return 0; > + > +err_chip_buf_free: > + dma_free_coherent(meson_chip->info_buf); > + dma_free_coherent(meson_chip->data_buf); > + > +err_chip_free: > + free(meson_chip); > + > + return ret; > +} > + > +static int meson_nfc_nand_chips_init(struct udevice *dev, > + struct meson_nfc *nfc) > +{ > + ofnode parent = dev_ofnode(dev); > + ofnode node; > + > + ofnode_for_each_subnode(node, parent) { > + int ret = meson_nfc_nand_chip_init(dev, nfc, node); > + > + if (ret) > + return ret; > + } > + > + return 0; > +} > + > +static void meson_nfc_clk_init(struct meson_nfc *nfc) > +{ > + u32 bus_cycle = NFC_DEFAULT_BUS_CYCLE; > + u32 bus_timing = NFC_DEFAULT_BUS_TIMING; > + u32 bus_cfg_val; > + > + writel(CLK_ALWAYS_ON_NAND | CLK_SELECT_NAND | CLK_ENABLE_VALUE, > nfc->reg_clk); > + writel(0, nfc->reg_base + NFC_REG_CFG); > + > + bus_cfg_val = (((bus_cycle - 1) & 31) | ((bus_timing & 31) << 5)); > + writel(bus_cfg_val, nfc->reg_base + NFC_REG_CFG); > + writel(BIT(31), nfc->reg_base + NFC_REG_CMD); > +} > + > +static int meson_probe(struct udevice *dev) > +{ > + struct meson_nfc *nfc = dev_get_priv(dev); > + void *addr; > + int ret; > + > + addr = dev_read_addr_ptr(dev); > + if (!addr) { > + dev_err(dev, "base register address not found\n"); > + return -EINVAL; > + } > + > + nfc->reg_base = addr; > + > + addr = dev_read_addr_index_ptr(dev, 1); > + if (!addr) { > + dev_err(dev, "clk register address not found\n"); > + return -EINVAL; > + } > + > + nfc->reg_clk = addr; > + nfc->dev = dev; > + > + meson_nfc_clk_init(nfc); > + > + ret = meson_nfc_nand_chips_init(dev, nfc); > + if (ret) { > + dev_err(nfc->dev, "failed to init chips\n"); > + return ret; > + } > + > + return 0; > +} > + > +static const struct udevice_id meson_nand_dt_ids[] = { > + {.compatible = "amlogic,meson-axg-nfc",}, > + { /* sentinel */ } > +}; > + > +U_BOOT_DRIVER(meson_nand) = { > + .name = "meson_nand", > + .id = UCLASS_MTD, > + .of_match = meson_nand_dt_ids, > + .probe = meson_probe, > + .priv_auto = sizeof(struct meson_nfc), > +}; > +
Reviewed-by: Michael Trimarchi <mich...@amarulasolutions.com> > +void board_nand_init(void) > +{ > + struct udevice *dev; > + int ret; > + > + ret = uclass_get_device_by_driver(UCLASS_MTD, > + DM_DRIVER_GET(meson_nand), &dev); > + > + if (ret && ret != -ENODEV) > + pr_err("Failed to initialize: %d\n", ret); > +} > -- > 2.35.0 > -- Michael Nazzareno Trimarchi Co-Founder & Chief Executive Officer M. +39 347 913 2170 mich...@amarulasolutions.com __________________________________ Amarula Solutions BV Joop Geesinkweg 125, 1114 AB, Amsterdam, NL T. +31 (0)85 111 9172 i...@amarulasolutions.com www.amarulasolutions.com