On 01/31/2016 04:23 PM, Simon Glass wrote:
Hi Alexander,

On 14 January 2016 at 22:06, Alexander Graf <ag...@suse.de> wrote:
Due to popular request, this is a separate patch implementing all of the memory
allocation and memory mapping bits.

We assume we always have a linear RAM map. At TOM U-Boot resides. Inside of
U-Boot there is the runtime region that we need to explicitly expose via the
EFI memory map. Below U-Boot, we reserve 128MB of RAM for LOADER_DATA.

Signed-off-by: Alexander Graf <ag...@suse.de>
---
  lib/efi_loader/efi_boottime.c     | 99 ++++++++++++++++++++++++++++++++++++++-
  lib/efi_loader/efi_image_loader.c | 28 ++++++++++-
  2 files changed, 123 insertions(+), 4 deletions(-)

diff --git a/lib/efi_loader/efi_boottime.c b/lib/efi_loader/efi_boottime.c
index 45217ef..ff3f969 100644
--- a/lib/efi_loader/efi_boottime.c
+++ b/lib/efi_loader/efi_boottime.c
@@ -98,6 +98,8 @@ static void efi_restore_tpl(unsigned long old_tpl)
  static void *efi_alloc(uint64_t len, int memory_type)
  {
         switch (memory_type) {
+       case EFI_LOADER_DATA:
+               return efi_loader_alloc(len);
         default:
                 return malloc(len);
         }
@@ -143,16 +145,109 @@ static efi_status_t efi_free_pages(uint64_t memory, 
unsigned long pages)
         return EFI_EXIT(EFI_SUCCESS);
  }

-/* Will be implemented in a later patch */
+/*
+ * Returns the EFI memory map. In our case, this looks pretty simple:
+ *
+ *  ____________________________    TOM
+ * |                            |
+ * |    Second half of U-Boot   |
What does 'second half' mean?

It means that there's one big chunk of "U-Boot" with the RTS sitting in the middle, dividing it into 2 halves :).

I hope my new memory allocation code makes this more obvious.


+ * |____________________________|   &__efi_runtime_stop
+ * |                            |
+ * |    EFI Runtime Services    |
+ * |____________________________|   &__efi_runtime_start
+ * |                            |
+ * |    First half of U-Boot    |
+ * |____________________________|   start of EFI loader allocation space
+ * |                            |
+ * |          Free RAM          |
+ * |____________________________|   CONFIG_SYS_SDRAM_BASE
+ *
+ * All pointers are extended to live on a 4k boundary. After exiting the boot
+ * services, only the EFI Runtime Services chunk of memory stays alive.
+ */
  static efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
                                struct efi_mem_desc *memory_map,
                                unsigned long *map_key,
                                unsigned long *descriptor_size,
                                uint32_t *descriptor_version)
  {
+       struct efi_mem_desc efi_memory_map[] = {
+               {
+                       /* RAM before U-Boot */
+                       .type = EFI_CONVENTIONAL_MEMORY,
+                       .attribute = 1 << EFI_MEMORY_WB_SHIFT,
+               },
+               {
+                       /* First half of U-Boot */
+                       .type = EFI_LOADER_DATA,
+                       .attribute = 1 << EFI_MEMORY_WB_SHIFT,
+               },
+               {
+                       /* EFI Runtime Services */
+                       .type = EFI_RUNTIME_SERVICES_CODE,
+                       .attribute = (1 << EFI_MEMORY_WB_SHIFT) |
+                                    (1ULL << EFI_MEMORY_RUNTIME_SHIFT),
+               },
+               {
+                       /* Second half of U-Boot */
+                       .type = EFI_LOADER_DATA,
+                       .attribute = 1 << EFI_MEMORY_WB_SHIFT,
+               },
+       };
+       ulong runtime_start, runtime_end, runtime_len_pages, runtime_len;
+
         EFI_ENTRY("%p, %p, %p, %p, %p", memory_map_size, memory_map, map_key,
                   descriptor_size, descriptor_version);
-       return EFI_EXIT(EFI_UNSUPPORTED);
+
+       runtime_start = (ulong)&__efi_runtime_start & ~0xfffULL;
+       runtime_end = ((ulong)&__efi_runtime_stop + 0xfff) & ~0xfffULL;
+       runtime_len_pages = (runtime_end - runtime_start) >> 12;
+       runtime_len = runtime_len_pages << 12;
+
+       /* Fill in where normal RAM is (up to U-Boot's top of stack) */
+       efi_memory_map[0].num_pages = gd->start_addr_sp >> 12;
+#ifdef CONFIG_SYS_SDRAM_BASE
If not defined, what happens?

The new code uses gd->bd->bi_dram.


+       efi_memory_map[0].physical_start = CONFIG_SYS_SDRAM_BASE;
+       efi_memory_map[0].virtual_start = CONFIG_SYS_SDRAM_BASE;
+       efi_memory_map[0].num_pages -= CONFIG_SYS_SDRAM_BASE >> 12;
+#endif
+
+       /* Give us some space for the stack */
+       efi_memory_map[0].num_pages -= (16 * 1024 * 1024) >> 12;
+
+       /* Reserve the EFI loader pool */
+       efi_memory_map[0].num_pages -= EFI_LOADER_POOL_SIZE >> 12;
+
+       /* Cut out the runtime services */
+       efi_memory_map[2].physical_start = runtime_start;
+       efi_memory_map[2].virtual_start = efi_memory_map[2].physical_start;
+       efi_memory_map[2].num_pages = runtime_len_pages;
+
+       /* Allocate the rest to U-Boot */
+       efi_memory_map[1].physical_start = efi_memory_map[0].physical_start +
+                                          (efi_memory_map[0].num_pages << 12);
+       efi_memory_map[1].virtual_start = efi_memory_map[1].physical_start;
+       efi_memory_map[1].num_pages = (runtime_start -
+                                      efi_memory_map[1].physical_start) >> 12;
+
+       efi_memory_map[3].physical_start = runtime_start + runtime_len;
+       efi_memory_map[3].virtual_start = efi_memory_map[3].physical_start;
+       efi_memory_map[3].num_pages = (gd->ram_top -
+                                      efi_memory_map[3].physical_start) >> 12;
+
+       *memory_map_size = sizeof(efi_memory_map);
+
+       if (descriptor_size)
+               *descriptor_size = sizeof(struct efi_mem_desc);
+
+       if (*memory_map_size < sizeof(efi_memory_map)) {
+               return EFI_EXIT(EFI_BUFFER_TOO_SMALL);
+       }
+
+       if (memory_map)
+               memcpy(memory_map, efi_memory_map, sizeof(efi_memory_map));
+
+       return EFI_EXIT(EFI_SUCCESS);
  }

  static efi_status_t efi_allocate_pool(int pool_type, unsigned long size, void 
**buffer)
diff --git a/lib/efi_loader/efi_image_loader.c 
b/lib/efi_loader/efi_image_loader.c
index a7788bf..67c4b06 100644
--- a/lib/efi_loader/efi_image_loader.c
+++ b/lib/efi_loader/efi_image_loader.c
@@ -29,10 +29,34 @@ efi_status_t efi_return_handle(void *handle, efi_guid_t 
*protocol,
         return EFI_SUCCESS;
  }

-/* Will be implemented in a later patch */
+/*
+ * EFI payloads potentially want to load pretty big images into memory,
+ * so our small malloc region isn't enough for them. However, they usually
+ * don't need a smart allocator either.
+ *
+ * So instead give them a really dumb one. We just reserve EFI_LOADER_POOL_SIZE
+ * bytes from 16MB below the stack start to give the stack some space.
+ * Then every allocation gets a 4k aligned chunk from it. We never free.
+ */
  void *efi_loader_alloc(uint64_t len)
  {
-       return NULL;
+       static unsigned long loader_pool;
+       void *r;
+
+       if (!loader_pool) {
+               loader_pool = ((gd->start_addr_sp >> 12) << 12) -
+                             (16 * MB) - EFI_LOADER_POOL_SIZE;
I think it would be better to reserve this in board_f() with a
reserve...() function. Perhaps store the address in global_data.

The new code doesn't reserve anything anymore :)


Alex


+       }
+
+       len = ROUND_UP(len, 4096);
+       /* Out of memory */
+       if ((loader_pool + len) >= (gd->relocaddr - TOTAL_MALLOC_LEN))
debug() here?

+               return NULL;
+
+       r = (void *)loader_pool;
+       loader_pool += len;
+
+       return r;
  }

  /*
--
2.1.4
Regards,
Simon

_______________________________________________
U-Boot mailing list
U-Boot@lists.denx.de
http://lists.denx.de/mailman/listinfo/u-boot

Reply via email to