This patch is a review feedback against Denali NAND controller driver. http://patchwork.ozlabs.org/patch/333077/
This is not applicable to the mainline. -- This driver code has diverged too much from that of Linux Kernel. The main cause was to drop "struct denali_nand_info *denali" from the most of functions and to replace "denali->foo" with "denali.foo". But is it necessary? I think it just resulted in the difficulty of diffing and re-use of the Linux code. This patch revives "struct denali_nand_info *denali" and "denali->foo". Signed-off-by: Masahiro Yamada <yamad...@jp.panasonic.com> Cc: Chin Liang See <cl...@altera.com> Cc: Artem Bityutskiy <artem.bityuts...@linux.intel.com> Cc: David Woodhouse <david.woodho...@intel.com> Cc: Brian Norris <computersforpe...@gmail.com> Cc: Scott Wood <scottw...@freescale.com> --- drivers/mtd/nand/denali.c | 608 +++++++++++++++++++++++++--------------------- 1 file changed, 327 insertions(+), 281 deletions(-) diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index dcde3e6..565ca9e 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -7,6 +7,7 @@ */ #include <common.h> +#include <malloc.h> #include <nand.h> #include <asm/errno.h> #include <asm/io.h> @@ -15,7 +16,6 @@ #define NAND_DEFAULT_TIMINGS -1 -static struct denali_nand_info denali; static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; /* We define a macro here that combines all interrupts this driver uses into @@ -40,6 +40,12 @@ static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; #define SUPPORT_8BITECC 1 +/* + * this macro allows us to convert from an MTD structure to our own + * device context (denali) structure. + */ +#define mtd_to_denali(m) (((struct nand_chip *)mtd->priv)->priv) + /* These constants are defined by the driver to enable common driver * configuration options. */ #define SPARE_ACCESS 0x41 @@ -66,44 +72,53 @@ static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; #define BANK(x) ((x) << 24) /* Interrupts are cleared by writing a 1 to the appropriate status bit */ -static inline void clear_interrupt(uint32_t irq_mask) +static inline void clear_interrupt(struct denali_nand_info *denali, + uint32_t irq_mask) { - uint32_t intr_status_reg = 0; - intr_status_reg = INTR_STATUS(denali.flash_bank); - writel(irq_mask, denali.flash_reg + intr_status_reg); + uint32_t intr_status_reg; + + intr_status_reg = INTR_STATUS(denali->flash_bank); + + writel(irq_mask, denali->flash_reg + intr_status_reg); } -static uint32_t read_interrupt_status(void) +static uint32_t read_interrupt_status(struct denali_nand_info *denali) { - uint32_t intr_status_reg = 0; - intr_status_reg = INTR_STATUS(denali.flash_bank); - return readl(denali.flash_reg + intr_status_reg); + uint32_t intr_status_reg; + + intr_status_reg = INTR_STATUS(denali->flash_bank); + + return readl(denali->flash_reg + intr_status_reg); } -static void clear_interrupts(void) +static void clear_interrupts(struct denali_nand_info *denali) { - uint32_t status = 0; - status = read_interrupt_status(); - clear_interrupt(status); - denali.irq_status = 0; + uint32_t status; + + status = read_interrupt_status(denali); + clear_interrupt(denali, status); + + denali->irq_status = 0; } -static void denali_irq_enable(uint32_t int_mask) +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask) { int i; - for (i = 0; i < denali.max_banks; ++i) - writel(int_mask, denali.flash_reg + INTR_EN(i)); + + for (i = 0; i < denali->max_banks; ++i) + writel(int_mask, denali->flash_reg + INTR_EN(i)); } -static uint32_t wait_for_irq(uint32_t irq_mask) +static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) { unsigned long timeout = 1000000; uint32_t intr_status; do { - intr_status = read_interrupt_status() & DENALI_IRQ_ALL; + intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL; if (intr_status & irq_mask) { - denali.irq_status &= ~irq_mask; + denali->irq_status &= ~irq_mask; /* our interrupt was detected */ break; } @@ -114,7 +129,7 @@ static uint32_t wait_for_irq(uint32_t irq_mask) if (timeout == 0) { /* timeout */ printf("Denali timeout with interrupt status %08x\n", - read_interrupt_status()); + read_interrupt_status(denali)); intr_status = 0; } return intr_status; @@ -126,80 +141,82 @@ static uint32_t wait_for_irq(uint32_t irq_mask) * of the command to the device memory followed by the data. This function * abstracts this common operation. */ -static void index_addr(uint32_t address, uint32_t data) +static void index_addr(struct denali_nand_info *denali, + uint32_t address, uint32_t data) { - writel(address, denali.flash_mem + INDEX_CTRL_REG); - writel(data, denali.flash_mem + INDEX_DATA_REG); + writel(address, denali->flash_mem + INDEX_CTRL_REG); + writel(data, denali->flash_mem + INDEX_DATA_REG); } /* Perform an indexed read of the device */ -static void index_addr_read_data(uint32_t address, uint32_t *pdata) +static void index_addr_read_data(struct denali_nand_info *denali, + uint32_t address, uint32_t *pdata) { - writel(address, denali.flash_mem + INDEX_CTRL_REG); - *pdata = readl(denali.flash_mem + INDEX_DATA_REG); + writel(address, denali->flash_mem + INDEX_CTRL_REG); + *pdata = readl(denali->flash_mem + INDEX_DATA_REG); } /* We need to buffer some data for some of the NAND core routines. * The operations manage buffering that data. */ -static void reset_buf(void) +static void reset_buf(struct denali_nand_info *denali) { - denali.buf.head = 0; - denali.buf.tail = 0; + denali->buf.head = denali->buf.tail = 0; } -static void write_byte_to_buf(uint8_t byte) +static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) { - BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf)); - denali.buf.buf[denali.buf.tail++] = byte; + denali->buf.buf[denali->buf.tail++] = byte; } /* resets a specific device connected to the core */ -static void reset_bank(void) +static void reset_bank(struct denali_nand_info *denali) { uint32_t irq_status; uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT; - clear_interrupts(); + clear_interrupts(denali); - writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET); + writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); - irq_status = wait_for_irq(irq_mask); + irq_status = wait_for_irq(denali, irq_mask); if (irq_status & INTR_STATUS__TIME_OUT) debug(KERN_ERR "reset bank failed.\n"); } /* Reset the flash controller */ -static uint32_t denali_nand_reset(void) +static uint32_t denali_nand_reset(struct denali_nand_info *denali) { uint32_t i; - for (i = 0; i < denali.max_banks; i++) + for (i = 0; i < denali->max_banks; i++) writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, - denali.flash_reg + INTR_STATUS(i)); + denali->flash_reg + INTR_STATUS(i)); - for (i = 0; i < denali.max_banks; i++) { - writel(1 << i, denali.flash_reg + DEVICE_RESET); - while (!(readl(denali.flash_reg + INTR_STATUS(i)) & + for (i = 0; i < denali->max_banks; i++) { + writel(1 << i, denali->flash_reg + DEVICE_RESET); + while (!(readl(denali->flash_reg + INTR_STATUS(i)) & (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) - if (readl(denali.flash_reg + INTR_STATUS(i)) & + if (readl(denali->flash_reg + INTR_STATUS(i)) & INTR_STATUS__TIME_OUT) debug(KERN_DEBUG "NAND Reset operation " "timed out on bank %d\n", i); } - for (i = 0; i < denali.max_banks; i++) + for (i = 0; i < denali->max_banks; i++) writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, - denali.flash_reg + INTR_STATUS(i)); + denali->flash_reg + INTR_STATUS(i)); return 0; } -/* this routine calculates the ONFI timing values for a given mode and +/* + * this routine calculates the ONFI timing values for a given mode and * programs the clocking register accordingly. The mode is determined by * the get_onfi_nand_para routine. */ -static void nand_onfi_timing_set(uint32_t mode) +static void nand_onfi_timing_set(struct denali_nand_info *denali, + uint16_t mode) { uint32_t trea[6] = {40, 30, 25, 20, 20, 16}; uint32_t trp[6] = {50, 25, 17, 15, 12, 10}; @@ -280,91 +297,93 @@ static void nand_onfi_timing_set(uint32_t mode) #endif /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ - if ((readl(denali.flash_reg + MANUFACTURER_ID) == 0) && - (readl(denali.flash_reg + DEVICE_ID) == 0x88)) + if ((readl(denali->flash_reg + MANUFACTURER_ID) == 0) && + (readl(denali->flash_reg + DEVICE_ID) == 0x88)) acc_clks = 6; - writel(acc_clks, denali.flash_reg + ACC_CLKS); - writel(re_2_we, denali.flash_reg + RE_2_WE); - writel(re_2_re, denali.flash_reg + RE_2_RE); - writel(we_2_re, denali.flash_reg + WE_2_RE); - writel(addr_2_data, denali.flash_reg + ADDR_2_DATA); - writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT); - writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT); - writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT); + writel(acc_clks, denali->flash_reg + ACC_CLKS); + writel(re_2_we, denali->flash_reg + RE_2_WE); + writel(re_2_re, denali->flash_reg + RE_2_RE); + writel(we_2_re, denali->flash_reg + WE_2_RE); + writel(addr_2_data, denali->flash_reg + ADDR_2_DATA); + writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); + writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); + writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT); } /* queries the NAND device to see what ONFI modes it supports. */ -static uint32_t get_onfi_nand_para(void) +static uint32_t get_onfi_nand_para(struct denali_nand_info *denali) { int i; - /* we needn't to do a reset here because driver has already + /* + * we needn't to do a reset here because driver has already * reset all the banks before - * */ - if (!(readl(denali.flash_reg + ONFI_TIMING_MODE) & + */ + if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) & ONFI_TIMING_MODE__VALUE)) return -EIO; for (i = 5; i > 0; i--) { - if (readl(denali.flash_reg + ONFI_TIMING_MODE) & + if (readl(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) break; } - nand_onfi_timing_set(i); + nand_onfi_timing_set(denali, i); /* By now, all the ONFI devices we know support the page cache */ /* rw feature. So here we enable the pipeline_rw_ahead feature */ return 0; } -static void get_samsung_nand_para(uint8_t device_id) +static void get_samsung_nand_para(struct denali_nand_info *denali, + uint8_t device_id) { if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ /* Set timing register values according to datasheet */ - writel(5, denali.flash_reg + ACC_CLKS); - writel(20, denali.flash_reg + RE_2_WE); - writel(12, denali.flash_reg + WE_2_RE); - writel(14, denali.flash_reg + ADDR_2_DATA); - writel(3, denali.flash_reg + RDWR_EN_LO_CNT); - writel(2, denali.flash_reg + RDWR_EN_HI_CNT); - writel(2, denali.flash_reg + CS_SETUP_CNT); + writel(5, denali->flash_reg + ACC_CLKS); + writel(20, denali->flash_reg + RE_2_WE); + writel(12, denali->flash_reg + WE_2_RE); + writel(14, denali->flash_reg + ADDR_2_DATA); + writel(3, denali->flash_reg + RDWR_EN_LO_CNT); + writel(2, denali->flash_reg + RDWR_EN_HI_CNT); + writel(2, denali->flash_reg + CS_SETUP_CNT); } } -static void get_toshiba_nand_para(void) +static void get_toshiba_nand_para(struct denali_nand_info *denali) { uint32_t tmp; /* Workaround to fix a controller bug which reports a wrong */ /* spare area size for some kind of Toshiba NAND device */ - if ((readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && - (readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE) - == 64)){ - writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE); - tmp = readl(denali.flash_reg + DEVICES_CONNECTED) * - readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE); - writel(tmp, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE); + if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && + (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { + writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + tmp = readl(denali->flash_reg + DEVICES_CONNECTED) * + readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); } } -static void get_hynix_nand_para(uint8_t device_id) +static void get_hynix_nand_para(struct denali_nand_info *denali, + uint8_t device_id) { uint32_t main_size, spare_size; switch (device_id) { case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ - writel(128, denali.flash_reg + PAGES_PER_BLOCK); - writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE); - writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE); + writel(128, denali->flash_reg + PAGES_PER_BLOCK); + writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); + writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); main_size = 4096 * - readl(denali.flash_reg + DEVICES_CONNECTED); + readl(denali->flash_reg + DEVICES_CONNECTED); spare_size = 224 * - readl(denali.flash_reg + DEVICES_CONNECTED); - writel(main_size, denali.flash_reg + LOGICAL_PAGE_DATA_SIZE); - writel(spare_size, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE); - writel(0, denali.flash_reg + DEVICE_WIDTH); + readl(denali->flash_reg + DEVICES_CONNECTED); + writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); + writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + writel(0, denali->flash_reg + DEVICE_WIDTH); break; default: debug(KERN_WARNING @@ -374,27 +393,28 @@ static void get_hynix_nand_para(uint8_t device_id) } } -/* determines how many NAND chips are connected to the controller. Note for +/* + * determines how many NAND chips are connected to the controller. Note for * Intel CE4100 devices we don't support more than one device. */ -static void find_valid_banks(void) +static void find_valid_banks(struct denali_nand_info *denali) { - uint32_t id[denali.max_banks]; + uint32_t id[denali->max_banks]; int i; - denali.total_used_banks = 1; - for (i = 0; i < denali.max_banks; i++) { - index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90); - index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0); - index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2), - &id[i]); + denali->total_used_banks = 1; + for (i = 0; i < denali->max_banks; i++) { + index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); + index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); + index_addr_read_data(denali, + (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); if (i == 0) { if (!(id[i] & 0x0ff)) break; } else { if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) - denali.total_used_banks++; + denali->total_used_banks++; else break; } @@ -405,39 +425,40 @@ static void find_valid_banks(void) * Use the configuration feature register to determine the maximum number of * banks that the hardware supports. */ -static void detect_max_banks(void) +static void detect_max_banks(struct denali_nand_info *denali) { - uint32_t features = readl(denali.flash_reg + FEATURES); - denali.max_banks = 2 << (features & FEATURES__N_BANKS); + uint32_t features = readl(denali->flash_reg + FEATURES); + denali->max_banks = 2 << (features & FEATURES__N_BANKS); } -static void detect_partition_feature(void) +static void detect_partition_feature(struct denali_nand_info *denali) { - /* For MRST platform, denali.fwblks represent the + /* + * For MRST platform, denali->fwblks represent the * number of blocks firmware is taken, * FW is in protect partition and MTD driver has no * permission to access it. So let driver know how many * blocks it can't touch. - * */ - if (readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) { - if ((readl(denali.flash_reg + PERM_SRC_ID(1)) & + */ + if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { + if ((readl(denali->flash_reg + PERM_SRC_ID(1)) & PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { - denali.fwblks = - ((readl(denali.flash_reg + MIN_MAX_BANK(1)) & + denali->fwblks = + ((readl(denali->flash_reg + MIN_MAX_BANK(1)) & MIN_MAX_BANK__MIN_VALUE) * - denali.blksperchip) + denali->blksperchip) + - (readl(denali.flash_reg + MIN_BLK_ADDR(1)) & + (readl(denali->flash_reg + MIN_BLK_ADDR(1)) & MIN_BLK_ADDR__VALUE); } else { - denali.fwblks = SPECTRA_START_BLOCK; + denali->fwblks = SPECTRA_START_BLOCK; } } else { - denali.fwblks = SPECTRA_START_BLOCK; + denali->fwblks = SPECTRA_START_BLOCK; } } -static uint32_t denali_nand_timing_set(void) +static uint32_t denali_nand_timing_set(struct denali_nand_info *denali) { uint32_t id_bytes[5], addr; uint8_t i, maf_id, device_id; @@ -447,35 +468,35 @@ static uint32_t denali_nand_timing_set(void) * report the correct device ID by reading from * DEVICE_ID register * */ - addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); - index_addr((uint32_t)addr | 0, 0x90); - index_addr((uint32_t)addr | 1, 0); + addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); + index_addr(denali, (uint32_t)addr | 0, 0x90); + index_addr(denali, (uint32_t)addr | 1, 0); for (i = 0; i < 5; i++) - index_addr_read_data(addr | 2, &id_bytes[i]); + index_addr_read_data(denali, addr | 2, &id_bytes[i]); maf_id = id_bytes[0]; device_id = id_bytes[1]; - if (readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) & + if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ - if (get_onfi_nand_para()) + if (get_onfi_nand_para(denali)) return -EIO; } else if (maf_id == 0xEC) { /* Samsung NAND */ - get_samsung_nand_para(device_id); + get_samsung_nand_para(denali, device_id); } else if (maf_id == 0x98) { /* Toshiba NAND */ - get_toshiba_nand_para(); + get_toshiba_nand_para(denali); } else if (maf_id == 0xAD) { /* Hynix NAND */ - get_hynix_nand_para(device_id); + get_hynix_nand_para(denali, device_id); } - find_valid_banks(); + find_valid_banks(denali); - detect_partition_feature(); + detect_partition_feature(denali); /* If the user specified to override the default timings * with a specific ONFI mode, we apply those changes here. */ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) - nand_onfi_timing_set(onfi_timing_mode); + nand_onfi_timing_set(denali, onfi_timing_mode); return 0; } @@ -488,26 +509,27 @@ static inline bool is_flash_bank_valid(int flash_bank) return (flash_bank >= 0 && flash_bank < 4); } -static void denali_irq_init(void) +static void denali_irq_init(struct denali_nand_info *denali) { uint32_t int_mask = 0; int i; /* Disable global interrupts */ - writel(0, denali.flash_reg + GLOBAL_INT_ENABLE); + writel(0, denali->flash_reg + GLOBAL_INT_ENABLE); int_mask = DENALI_IRQ_ALL; /* Clear all status bits */ - for (i = 0; i < denali.max_banks; ++i) - writel(0xFFFF, denali.flash_reg + INTR_STATUS(i)); + for (i = 0; i < denali->max_banks; ++i) + writel(0xFFFF, denali->flash_reg + INTR_STATUS(i)); - denali_irq_enable(int_mask); + denali_irq_enable(denali, int_mask); } /* This helper function setups the registers for ECC and whether or not * the spare area will be transferred. */ -static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) +static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, + bool transfer_spare) { int ecc_en_flag = 0, transfer_spare_flag = 0; @@ -516,40 +538,41 @@ static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; /* Enable spare area/ECC per user's request. */ - writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE); + writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); /* applicable for MAP01 only */ - writel(transfer_spare_flag, denali.flash_reg + TRANSFER_SPARE_REG); + writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); } /* sends a pipeline command operation to the controller. See the Denali NAND * controller's user guide for more information (section 4.2.3.6). */ -static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare, +static int denali_send_pipeline_cmd(struct denali_nand_info *denali, + bool ecc_en, bool transfer_spare, int access_type, int op) { - uint32_t addr = 0x0, cmd = 0x0, irq_status; + uint32_t addr, cmd, irq_status; static uint32_t page_count = 1; - setup_ecc_for_xfer(ecc_en, transfer_spare); + setup_ecc_for_xfer(denali, ecc_en, transfer_spare); /* clear interrupts */ - clear_interrupts(); + clear_interrupts(denali); - addr = BANK(denali.flash_bank) | denali.page; + addr = BANK(denali->flash_bank) | denali->page; /* setup the acccess type */ cmd = MODE_10 | addr; - index_addr(cmd, access_type); + index_addr(denali, cmd, access_type); /* setup the pipeline command */ - index_addr(cmd, 0x2000 | op | page_count); + index_addr(denali, cmd, 0x2000 | op | page_count); cmd = MODE_01 | addr; - writel(cmd, denali.flash_mem + INDEX_CTRL_REG); + writel(cmd, denali->flash_mem + INDEX_CTRL_REG); if (op == DENALI_READ) { /* wait for command to be accepted */ - irq_status = wait_for_irq(INTR_STATUS__LOAD_COMP); + irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP); if (irq_status == 0) return -EIO; @@ -559,7 +582,8 @@ static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare, } /* helper function that simply writes a buffer to the flash */ -static int write_data_to_flash_mem(const void *buf, int len) +static int write_data_to_flash_mem(struct denali_nand_info *denali, + const uint8_t *buf, int len) { uint32_t i = 0, *buf32; @@ -570,12 +594,13 @@ static int write_data_to_flash_mem(const void *buf, int len) /* write the data to the flash memory */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) - writel(*buf32++, denali.flash_mem + INDEX_DATA_REG); + writel(*buf32++, denali->flash_mem + INDEX_DATA_REG); return i * 4; /* intent is to return the number of bytes read */ } /* helper function that simply reads a buffer from the flash */ -static int read_data_from_flash_mem(uint8_t *buf, int len) +static int read_data_from_flash_mem(struct denali_nand_info *denali, + uint8_t *buf, int len) { uint32_t i, *buf32; @@ -593,42 +618,46 @@ static int read_data_from_flash_mem(uint8_t *buf, int len) /* transfer the data from the flash */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) - *buf32++ = readl(denali.flash_mem + INDEX_DATA_REG); + *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG); + return i * 4; /* intent is to return the number of bytes read */ } -static void denali_mode_main_access(void) +static void denali_mode_main_access(struct denali_nand_info *denali) { uint32_t addr, cmd; - addr = BANK(denali.flash_bank) | denali.page; + + addr = BANK(denali->flash_bank) | denali->page; cmd = MODE_10 | addr; - index_addr(cmd, MAIN_ACCESS); + index_addr(denali, cmd, MAIN_ACCESS); } -static void denali_mode_main_spare_access(void) +static void denali_mode_main_spare_access(struct denali_nand_info *denali) { uint32_t addr, cmd; - addr = BANK(denali.flash_bank) | denali.page; + + addr = BANK(denali->flash_bank) | denali->page; cmd = MODE_10 | addr; - index_addr(cmd, MAIN_SPARE_ACCESS); + index_addr(denali, cmd, MAIN_SPARE_ACCESS); } /* writes OOB data to the device */ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { + struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status; uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | INTR_STATUS__PROGRAM_FAIL; int status = 0; - denali.page = page; + denali->page = page; - if (denali_send_pipeline_cmd(false, true, SPARE_ACCESS, + if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, DENALI_WRITE) == 0) { - write_data_to_flash_mem(buf, mtd->oobsize); + write_data_to_flash_mem(denali, buf, mtd->oobsize); /* wait for operation to complete */ - irq_status = wait_for_irq(irq_mask); + irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) { dev_err(denali->dev, "OOB write failed\n"); @@ -644,22 +673,23 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) /* reads OOB data from the device */ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { + struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_mask = INTR_STATUS__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0; - denali.page = page; + denali->page = page; - if (denali_send_pipeline_cmd(false, true, SPARE_ACCESS, + if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, DENALI_READ) == 0) { - read_data_from_flash_mem(buf, mtd->oobsize); + read_data_from_flash_mem(denali, buf, mtd->oobsize); /* wait for command to be accepted * can always use status0 bit as the mask is identical for each * bank. */ - irq_status = wait_for_irq(irq_mask); + irq_status = wait_for_irq(denali, irq_mask); if (irq_status == 0) - printf("page on OOB timeout %d\n", denali.page); + printf("page on OOB timeout %d\n", denali->page); /* We set the device back to MAIN_ACCESS here as I observed * instability with the controller if you do a block erase @@ -667,16 +697,16 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) * is reliable (according to the MTD test infrastructure) * if you are in MAIN_ACCESS. */ - addr = BANK(denali.flash_bank) | denali.page; + addr = BANK(denali->flash_bank) | denali->page; cmd = MODE_10 | addr; - index_addr(cmd, MAIN_ACCESS); + index_addr(denali, cmd, MAIN_ACCESS); } } /* this function examines buffers to see if they contain data that * indicate that the buffer is part of an erased region of flash. */ -bool is_erased(uint8_t *buf, int len) +static bool is_erased(uint8_t *buf, int len) { int i = 0; for (i = 0; i < len; i++) @@ -685,80 +715,80 @@ bool is_erased(uint8_t *buf, int len) return true; } - /* programs the controller to either enable/disable DMA transfers */ -static void denali_enable_dma(bool en) +static void denali_enable_dma(struct denali_nand_info *denali, bool en) { uint32_t reg_val = 0x0; if (en) reg_val = DMA_ENABLE__FLAG; - writel(reg_val, denali.flash_reg + DMA_ENABLE); - readl(denali.flash_reg + DMA_ENABLE); + writel(reg_val, denali->flash_reg + DMA_ENABLE); + readl(denali->flash_reg + DMA_ENABLE); } /* setups the HW to perform the data DMA */ -static void denali_setup_dma(int op) +static void denali_setup_dma(struct denali_nand_info *denali, int op) { - const int page_count = 1; uint32_t mode; - uint32_t addr = (uint32_t)denali.buf.dma_buf; + const int page_count = 1; + uint32_t addr = (uint32_t)denali->buf.dma_buf; - flush_dcache_range(addr, addr + sizeof(denali.buf.dma_buf)); + flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf)); #ifdef CONFIG_NAND_DENALI_64BIT - mode = MODE_10 | BANK(denali.flash_bank) | denali.page; + mode = MODE_10 | BANK(denali->flash_bank) | denali->page; /* DMA is a three step process */ /* 1. setup transfer type, interrupt when complete, burst len = 64 bytes, the number of pages */ - index_addr(mode, 0x01002000 | (64 << 16) | op | page_count); + index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count); /* 2. set memory low address bits 31:0 */ - index_addr(mode, addr); + index_addr(denali, mode, addr); /* 3. set memory high address bits 64:32 */ - index_addr(mode, 0); + index_addr(denali, mode, 0); #else - mode = MODE_10 | BANK(denali.flash_bank); + mode = MODE_10 | BANK(denali->flash_bank); /* DMA is a four step process */ /* 1. setup transfer type and # of pages */ - index_addr(mode | denali.page, 0x2000 | op | page_count); + index_addr(denali, mode | denali->page, 0x2000 | op | page_count); /* 2. set memory high address bits 23:8 */ - index_addr(mode | ((uint32_t)(addr >> 16) << 8), 0x2200); + index_addr(denali, mode | ((uint32_t)(addr >> 16) << 8), 0x2200); /* 3. set memory low address bits 23:8 */ - index_addr(mode | ((uint32_t)addr << 8), 0x2300); + index_addr(denali, mode | ((uint32_t)addr << 8), 0x2300); /* 4. interrupt when complete, burst len = 64 bytes*/ - index_addr(mode | 0x14000, 0x2400); + index_addr(denali, mode | 0x14000, 0x2400); #endif } /* Common DMA function */ -static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer, +static uint32_t denali_dma_configuration(struct denali_nand_info *denali, + uint32_t ops, bool raw_xfer, uint32_t irq_mask, int oob_required) { uint32_t irq_status = 0; /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */ - setup_ecc_for_xfer(!raw_xfer, oob_required); + setup_ecc_for_xfer(denali, !raw_xfer, oob_required); /* clear any previous interrupt flags */ - clear_interrupts(); + clear_interrupts(denali); /* enable the DMA */ - denali_enable_dma(true); + denali_enable_dma(denali, true); /* setup the DMA */ - denali_setup_dma(ops); + denali_setup_dma(denali, ops); /* wait for operation to complete */ - irq_status = wait_for_irq(irq_mask); + irq_status = wait_for_irq(denali, irq_mask); /* if ECC fault happen, seems we need delay before turning off DMA. * If not, the controller will go into non responsive condition */ @@ -766,7 +796,7 @@ static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer, udelay(100); /* disable the DMA */ - denali_enable_dma(false); + denali_enable_dma(denali, false); return irq_status; } @@ -774,33 +804,35 @@ static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer, static int write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, bool raw_xfer, int oob_required) { + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; - denali.status = 0; + denali->status = 0; /* copy buffer into DMA buffer */ - memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize); + memcpy((void *)denali->buf.dma_buf, buf, mtd->writesize); /* need extra memcpoy for raw transfer */ if (raw_xfer) - memcpy((void *)denali.buf.dma_buf + mtd->writesize, + memcpy((void *)denali->buf.dma_buf + mtd->writesize, chip->oob_poi, mtd->oobsize); /* setting up DMA */ - irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask, - oob_required); + irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer, + irq_mask, oob_required); /* if timeout happen, error out */ if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { debug("DMA timeout for denali write_page\n"); - denali.status = NAND_STATUS_FAIL; + denali->status = NAND_STATUS_FAIL; return -EIO; } if (irq_status & INTR_STATUS__LOCKED_BLK) { debug("Failed as write to locked block\n"); - denali.status = NAND_STATUS_FAIL; + denali->status = NAND_STATUS_FAIL; return -EIO; } return 0; @@ -816,18 +848,18 @@ static int write_page(struct mtd_info *mtd, struct nand_chip *chip, static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { + struct denali_nand_info *denali = mtd_to_denali(mtd); + /* * for regular page writes, we let HW handle all the ECC * data written to the device. */ - debug("denali_write_page at page %08x\n", denali.page); - if (oob_required) /* switch to main + spare access */ - denali_mode_main_spare_access(); + denali_mode_main_spare_access(denali); else /* switch to main access only */ - denali_mode_main_access(); + denali_mode_main_access(denali); return write_page(mtd, chip, buf, false, oob_required); } @@ -840,18 +872,19 @@ static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { + struct denali_nand_info *denali = mtd_to_denali(mtd); + /* * for raw page writes, we want to disable ECC and simply write * whatever data is in the buffer. */ - debug("denali_write_page_raw at page %08x\n", denali.page); if (oob_required) /* switch to main + spare access */ - denali_mode_main_spare_access(); + denali_mode_main_spare_access(denali); else /* switch to main access only */ - denali_mode_main_access(); + denali_mode_main_access(denali); return write_page(mtd, chip, buf, true, oob_required); } @@ -866,24 +899,25 @@ static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; - debug("denali_read_page_raw at page %08x\n", page); - if (denali.page != page) { + if (denali->page != page) { debug("Missing NAND_CMD_READ0 command\n"); return -EIO; } if (oob_required) /* switch to main + spare access */ - denali_mode_main_spare_access(); + denali_mode_main_spare_access(denali); else /* switch to main access only */ - denali_mode_main_access(); + denali_mode_main_access(denali); /* setting up the DMA where ecc_enable is false */ - irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask, - oob_required); + irq_status = denali_dma_configuration(denali, DENALI_READ, true, + irq_mask, oob_required); /* if timeout happen, error out */ if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { @@ -892,44 +926,42 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, } /* splitting the content to destination buffer holder */ - memcpy(chip->oob_poi, (denali.buf.dma_buf + mtd->writesize), + memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize), mtd->oobsize); - memcpy(buf, denali.buf.dma_buf, mtd->writesize); - debug("buf %02x %02x\n", buf[0], buf[1]); - debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]); + memcpy(buf, denali->buf.dma_buf, mtd->writesize); + return 0; } static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { + struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; - debug("denali_read_page at page %08x\n", page); - if (denali.page != page) { + if (denali->page != page) { debug("Missing NAND_CMD_READ0 command\n"); return -EIO; } if (oob_required) /* switch to main + spare access */ - denali_mode_main_spare_access(); + denali_mode_main_spare_access(denali); else /* switch to main access only */ - denali_mode_main_access(); + denali_mode_main_access(denali); /* setting up the DMA where ecc_enable is true */ - irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask, - oob_required); + irq_status = denali_dma_configuration(denali, DENALI_READ, false, + irq_mask, oob_required); - memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); - debug("buf %02x %02x\n", buf[0], buf[1]); + memcpy(buf, (const void *)denali->buf.dma_buf, mtd->writesize); /* check whether any ECC error */ if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) { /* is the ECC cause by erase page, check using read_page_raw */ debug(" Uncorrected ECC detected\n"); - denali_read_page_raw(mtd, chip, buf, oob_required, denali.page); + denali_read_page_raw(mtd, chip, buf, oob_required, denali->page); if (is_erased(buf, mtd->writesize) == true && is_erased(chip->oob_poi, mtd->oobsize) == true) { @@ -939,18 +971,10 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, return -EIO; } } - memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); + memcpy(buf, (const void *)denali->buf.dma_buf, mtd->writesize); return 0; } -static uint8_t denali_read_byte(struct mtd_info *mtd) -{ - uint32_t addr, result; - addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); - index_addr_read_data((uint32_t)addr | 2, &result); - return (uint8_t)result & 0xFF; -} - static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { @@ -959,91 +983,105 @@ static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, return 0; } +static uint8_t denali_read_byte(struct mtd_info *mtd) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t addr, result; + + addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); + index_addr_read_data(denali, addr | 2, &result); + return (uint8_t)result & 0xFF; +} + static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { + struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t i, addr, result; /* delay for tR (data transfer from Flash array to data register) */ udelay(25); /* ensure device completed else additional delay and polling */ - wait_for_irq(INTR_STATUS__INT_ACT); + wait_for_irq(denali, INTR_STATUS__INT_ACT); - addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); + addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); for (i = 0; i < len; i++) { - index_addr_read_data((uint32_t)addr | 2, &result); - write_byte_to_buf(result); + index_addr_read_data(denali, (uint32_t)addr | 2, &result); + write_byte_to_buf(denali, result); } - memcpy(buf, denali.buf.buf, len); + memcpy(buf, denali->buf.buf, len); } static void denali_select_chip(struct mtd_info *mtd, int chip) { - denali.flash_bank = chip; + struct denali_nand_info *denali = mtd_to_denali(mtd); + + denali->flash_bank = chip; } static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) { - int status = denali.status; - denali.status = 0; + struct denali_nand_info *denali = mtd_to_denali(mtd); + int status = denali->status; + denali->status = 0; return status; } static void denali_erase(struct mtd_info *mtd, int page) { - uint32_t cmd = 0x0, irq_status = 0; - - debug("denali_erase at page %08x\n", page); + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t cmd, irq_status; /* clear interrupts */ - clear_interrupts(); + clear_interrupts(denali); /* setup page read request for access type */ - cmd = MODE_10 | BANK(denali.flash_bank) | page; - index_addr((uint32_t)cmd, 0x1); + cmd = MODE_10 | BANK(denali->flash_bank) | page; + index_addr(denali, cmd, 0x1); /* wait for erase to complete or failure to occur */ - irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP | - INTR_STATUS__ERASE_FAIL); + irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | + INTR_STATUS__ERASE_FAIL); if (irq_status & INTR_STATUS__ERASE_FAIL || irq_status & INTR_STATUS__LOCKED_BLK) - denali.status = NAND_STATUS_FAIL; + denali->status = NAND_STATUS_FAIL; else - denali.status = 0; + denali->status = 0; } static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, int page) { + struct denali_nand_info *denali = mtd_to_denali(mtd); uint32_t addr; switch (cmd) { case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: - addr = MODE_11 | BANK(denali.flash_bank); - index_addr(addr | 0, cmd); + addr = MODE_11 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, cmd); break; case NAND_CMD_PARAM: - clear_interrupts(); + clear_interrupts(denali); case NAND_CMD_READID: - reset_buf(); + reset_buf(denali); /* sometimes ManufactureId read from register is not right * e.g. some of Micron MT29F32G08QAA MLC NAND chips * So here we send READID cmd to NAND insteand * */ - addr = MODE_11 | BANK(denali.flash_bank); - index_addr(addr | 0, cmd); - index_addr(addr | 1, col & 0xFF); + addr = MODE_11 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, cmd); + index_addr(denali, addr | 1, col & 0xFF); break; case NAND_CMD_READ0: case NAND_CMD_SEQIN: - denali.page = page; + denali->page = page; break; case NAND_CMD_RESET: - reset_bank(); + reset_bank(denali); break; case NAND_CMD_READOOB: /* TODO: Read OOB data */ @@ -1060,20 +1098,20 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, /* nothing to do here as it was done during NAND_CMD_ERASE1 */ break; case NAND_CMD_UNLOCK1: - addr = MODE_10 | BANK(denali.flash_bank) | page; - index_addr(addr | 0, DENALI_UNLOCK_START); + addr = MODE_10 | BANK(denali->flash_bank) | page; + index_addr(denali, addr | 0, DENALI_UNLOCK_START); break; case NAND_CMD_UNLOCK2: - addr = MODE_10 | BANK(denali.flash_bank) | page; - index_addr(addr | 0, DENALI_UNLOCK_END); + addr = MODE_10 | BANK(denali->flash_bank) | page; + index_addr(denali, addr | 0, DENALI_UNLOCK_END); break; case NAND_CMD_LOCK: - addr = MODE_10 | BANK(denali.flash_bank); - index_addr(addr | 0, DENALI_LOCK); + addr = MODE_10 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, DENALI_LOCK); break; case NAND_CMD_LOCK_TIGHT: - addr = MODE_10 | BANK(denali.flash_bank); - index_addr(addr | 0, DENALI_LOCK_TIGHT); + addr = MODE_10 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, DENALI_LOCK_TIGHT); break; default: printf(": unsupported command received 0x%x\n", cmd); @@ -1083,34 +1121,42 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, /* end NAND core entry points */ /* Initialization code to bring the device up to a known good state */ -static void denali_hw_init(void) +static void denali_hw_init(struct denali_nand_info *denali) { /* * tell driver how many bit controller will skip before writing * ECC code in OOB. This is normally used for bad block marker */ writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES, - denali.flash_reg + SPARE_AREA_SKIP_BYTES); - detect_max_banks(); - denali_nand_reset(); - writel(0x0F, denali.flash_reg + RB_PIN_ENABLED); + denali->flash_reg + SPARE_AREA_SKIP_BYTES); + detect_max_banks(denali); + denali_nand_reset(denali); + writel(0x0F, denali->flash_reg + RB_PIN_ENABLED); writel(CHIP_EN_DONT_CARE__FLAG, - denali.flash_reg + CHIP_ENABLE_DONT_CARE); - writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER); + denali->flash_reg + CHIP_ENABLE_DONT_CARE); + writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER); /* Should set value for these registers when init */ - writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES); - writel(1, denali.flash_reg + ECC_ENABLE); - denali_nand_timing_set(); - denali_irq_init(); + writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); + writel(1, denali->flash_reg + ECC_ENABLE); + denali_nand_timing_set(denali); + denali_irq_init(denali); } static struct nand_ecclayout nand_oob; static int denali_nand_init(struct nand_chip *nand) { - denali.flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE; - denali.flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE; + struct denali_nand_info *denali; + + denali = malloc(sizeof(*denali)); + if (!denali) + return -ENOMEM; + + nand->priv = denali; + + denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE; + denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE; #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT /* check whether flash got BBT table (located at end of flash). As we @@ -1137,7 +1183,7 @@ static int denali_nand_init(struct nand_chip *nand) * Tell driver the ecc strength. This register may be already set * correctly. So we read this value out. */ - nand->ecc.strength = readl(denali.flash_reg + ECC_CORRECTION); + nand->ecc.strength = readl(denali->flash_reg + ECC_CORRECTION); switch (nand->ecc.size) { case 512: nand->ecc.bytes = (nand->ecc.strength * 13 + 15) / 16 * 2; @@ -1158,7 +1204,7 @@ static int denali_nand_init(struct nand_chip *nand) nand->read_buf = denali_read_buf; nand->select_chip = denali_select_chip; nand->waitfunc = denali_waitfunc; - denali_hw_init(); + denali_hw_init(denali); return 0; } -- 1.8.3.2 _______________________________________________ U-Boot mailing list U-Boot@lists.denx.de http://lists.denx.de/mailman/listinfo/u-boot