Hi Scott, As there are no further comments, would need your help to apply this patch. Thanks and appreciate for your support.
Chin Liang On Wed, 2013-12-18 at 15:18 -0600, Chin Liang See wrote: > To add the Denali NAND driver support into U-Boot. It required > information such as register base address from configuration > header file within include/configs folder. > > Signed-off-by: Chin Liang See <cl...@altera.com> > Cc: Artem Bityutskiy <artem.bityuts...@linux.intel.com> > Cc: David Woodhouse <david.woodho...@intel.com> > Cc: Brian Norris <computersforpe...@gmail.com> > Cc: Scott Wood <scottw...@freescale.com> > --- > drivers/mtd/nand/Makefile | 1 + > drivers/mtd/nand/denali_nand.c | 1166 > ++++++++++++++++++++++++++++++++++++++++ > drivers/mtd/nand/denali_nand.h | 501 +++++++++++++++++ > 3 files changed, 1668 insertions(+) > create mode 100644 drivers/mtd/nand/denali_nand.c > create mode 100644 drivers/mtd/nand/denali_nand.h > > diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile > index 02b149c..24e8218 100644 > --- a/drivers/mtd/nand/Makefile > +++ b/drivers/mtd/nand/Makefile > @@ -39,6 +39,7 @@ obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o > obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o > obj-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o > obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o > +obj-$(CONFIG_NAND_DENALI) += denali_nand.o > obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o > obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o > obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o > diff --git a/drivers/mtd/nand/denali_nand.c b/drivers/mtd/nand/denali_nand.c > new file mode 100644 > index 0000000..55246c9 > --- /dev/null > +++ b/drivers/mtd/nand/denali_nand.c > @@ -0,0 +1,1166 @@ > +/* > + * Copyright (C) 2013 Altera Corporation <www.altera.com> > + * Copyright (C) 2009-2010, Intel Corporation and its suppliers. > + * > + * SPDX-License-Identifier: GPL-2.0+ > + */ > + > +#include <common.h> > +#include <nand.h> > +#include <asm/errno.h> > +#include <asm/io.h> > + > +#include "denali_nand.h" > + > +/* We define a module parameter that allows the user to override > + * the hardware and decide what timing mode should be used. > + */ > +#define NAND_DEFAULT_TIMINGS -1 > + > +static struct denali_nand_info denali; > +static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; > + > +/* We define a macro here that combines all interrupts this driver uses into > + * a single constant value, for convenience. */ > +#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ > + INTR_STATUS__ECC_TRANSACTION_DONE | \ > + INTR_STATUS__ECC_ERR | \ > + INTR_STATUS__PROGRAM_FAIL | \ > + INTR_STATUS__LOAD_COMP | \ > + INTR_STATUS__PROGRAM_COMP | \ > + INTR_STATUS__TIME_OUT | \ > + INTR_STATUS__ERASE_FAIL | \ > + INTR_STATUS__RST_COMP | \ > + INTR_STATUS__ERASE_COMP | \ > + INTR_STATUS__ECC_UNCOR_ERR | \ > + INTR_STATUS__INT_ACT | \ > + INTR_STATUS__LOCKED_BLK) > + > +/* indicates whether or not the internal value for the flash bank is > + * valid or not */ > +#define CHIP_SELECT_INVALID -1 > + > +#define SUPPORT_8BITECC 1 > + > +/* This macro divides two integers and rounds fractional values up > + * to the nearest integer value. */ > +#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) > + > +/* These constants are defined by the driver to enable common driver > + * configuration options. */ > +#define SPARE_ACCESS 0x41 > +#define MAIN_ACCESS 0x42 > +#define MAIN_SPARE_ACCESS 0x43 > + > +#define DENALI_UNLOCK_START 0x10 > +#define DENALI_UNLOCK_END 0x11 > +#define DENALI_LOCK 0x21 > +#define DENALI_LOCK_TIGHT 0x31 > +#define DENALI_BUFFER_LOAD 0x60 > +#define DENALI_BUFFER_WRITE 0x62 > + > +#define DENALI_READ 0 > +#define DENALI_WRITE 0x100 > + > +/* types of device accesses. We can issue commands and get status */ > +#define COMMAND_CYCLE 0 > +#define ADDR_CYCLE 1 > +#define STATUS_CYCLE 2 > + > +/* this is a helper macro that allows us to > + * format the bank into the proper bits for the controller */ > +#define BANK(x) ((x) << 24) > + > +/* Interrupts are cleared by writing a 1 to the appropriate status bit */ > +static inline void clear_interrupt(uint32_t irq_mask) > +{ > + uint32_t intr_status_reg = 0; > + intr_status_reg = INTR_STATUS(denali.flash_bank); > + __raw_writel(irq_mask, denali.flash_reg + intr_status_reg); > +} > + > +static uint32_t read_interrupt_status(void) > +{ > + uint32_t intr_status_reg = 0; > + intr_status_reg = INTR_STATUS(denali.flash_bank); > + return __raw_readl(denali.flash_reg + intr_status_reg); > +} > + > +static void clear_interrupts(void) > +{ > + uint32_t status = 0x0; > + status = read_interrupt_status(); > + clear_interrupt(status); > + denali.irq_status = 0x0; > +} > + > +static void denali_irq_enable(uint32_t int_mask) > +{ > + int i; > + for (i = 0; i < denali.max_banks; ++i) > + __raw_writel(int_mask, denali.flash_reg + INTR_EN(i)); > +} > + > +static uint32_t wait_for_irq(uint32_t irq_mask) > +{ > + unsigned long comp_res = 1000; > + uint32_t intr_status = 0; > + > + do { > + intr_status = read_interrupt_status() & DENALI_IRQ_ALL; > + if (intr_status & irq_mask) { > + denali.irq_status &= ~irq_mask; > + /* our interrupt was detected */ > + break; > + } > + udelay(1); > + comp_res--; > + } while (comp_res != 0); > + > + if (comp_res == 0) { > + /* timeout */ > + printf("Denali timeout with interrupt status %08x\n", > + read_interrupt_status()); > + intr_status = 0; > + } > + return intr_status; > +} > + > +/* Certain operations for the denali NAND controller use > + * an indexed mode to read/write data. The operation is > + * performed by writing the address value of the command > + * to the device memory followed by the data. This function > + * abstracts this common operation. > +*/ > +static void index_addr(uint32_t address, uint32_t data) > +{ > + __raw_writel(address, denali.flash_mem); > + __raw_writel(data, denali.flash_mem + 0x10); > +} > + > +/* Perform an indexed read of the device */ > +static void index_addr_read_data(uint32_t address, uint32_t *pdata) > +{ > + __raw_writel(address, denali.flash_mem); > + *pdata = __raw_readl(denali.flash_mem + 0x10); > +} > + > +/* We need to buffer some data for some of the NAND core routines. > + * The operations manage buffering that data. */ > +static void reset_buf(void) > +{ > + denali.buf.head = denali.buf.tail = 0; > +} > + > +static void write_byte_to_buf(uint8_t byte) > +{ > + BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf)); > + denali.buf.buf[denali.buf.tail++] = byte; > +} > + > +/* resets a specific device connected to the core */ > +static void reset_bank(void) > +{ > + uint32_t irq_status = 0; > + uint32_t irq_mask = INTR_STATUS__RST_COMP | > + INTR_STATUS__TIME_OUT; > + > + clear_interrupts(); > + > + __raw_writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET); > + > + irq_status = wait_for_irq(irq_mask); > + if (irq_status & INTR_STATUS__TIME_OUT) > + debug(KERN_ERR "reset bank failed.\n"); > +} > + > +/* Reset the flash controller */ > +static uint16_t denali_nand_reset(void) > +{ > + uint32_t i; > + > + for (i = 0 ; i < denali.max_banks; i++) > + __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, > + denali.flash_reg + INTR_STATUS(i)); > + > + for (i = 0 ; i < denali.max_banks; i++) { > + __raw_writel(1 << i, denali.flash_reg + DEVICE_RESET); > + while (!(__raw_readl(denali.flash_reg + INTR_STATUS(i)) & > + (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) > + if (__raw_readl(denali.flash_reg + INTR_STATUS(i)) & > + INTR_STATUS__TIME_OUT) > + debug(KERN_DEBUG "NAND Reset operation " > + "timed out on bank %d\n", i); > + } > + > + for (i = 0; i < denali.max_banks; i++) > + __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, > + denali.flash_reg + INTR_STATUS(i)); > + > + return PASS; > +} > + > +/* this routine calculates the ONFI timing values for a given mode and > + * programs the clocking register accordingly. The mode is determined by > + * the get_onfi_nand_para routine. > + */ > +static void nand_onfi_timing_set(uint16_t mode) > +{ > + uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; > + uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; > + uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; > + uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; > + uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; > + uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; > + uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; > + uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; > + uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; > + uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; > + uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; > + uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; > + > + uint16_t TclsRising = 1; > + uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; > + uint16_t dv_window = 0; > + uint16_t en_lo, en_hi; > + uint16_t acc_clks; > + uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; > + > + en_lo = CEIL_DIV(Trp[mode], CLK_X); > + en_hi = CEIL_DIV(Treh[mode], CLK_X); > +#if ONFI_BLOOM_TIME > + if ((en_hi * CLK_X) < (Treh[mode] + 2)) > + en_hi++; > +#endif > + > + if ((en_lo + en_hi) * CLK_X < Trc[mode]) > + en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); > + > + if ((en_lo + en_hi) < CLK_MULTI) > + en_lo += CLK_MULTI - en_lo - en_hi; > + > + while (dv_window < 8) { > + data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; > + > + data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; > + > + data_invalid = > + data_invalid_rhoh < > + data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; > + > + dv_window = data_invalid - Trea[mode]; > + > + if (dv_window < 8) > + en_lo++; > + } > + > + acc_clks = CEIL_DIV(Trea[mode], CLK_X); > + > + while (((acc_clks * CLK_X) - Trea[mode]) < 3) > + acc_clks++; > + > + if ((data_invalid - acc_clks * CLK_X) < 2) > + debug(KERN_WARNING "%s, Line %d: Warning!\n", > + __FILE__, __LINE__); > + > + addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); > + re_2_we = CEIL_DIV(Trhw[mode], CLK_X); > + re_2_re = CEIL_DIV(Trhz[mode], CLK_X); > + we_2_re = CEIL_DIV(Twhr[mode], CLK_X); > + cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); > + if (!TclsRising) > + cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); > + if (cs_cnt == 0) > + cs_cnt = 1; > + > + if (Tcea[mode]) { > + while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) > + cs_cnt++; > + } > + > +#if MODE5_WORKAROUND > + if (mode == 5) > + acc_clks = 5; > +#endif > + > + /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ > + if ((__raw_readl(denali.flash_reg + MANUFACTURER_ID) == 0) && > + (__raw_readl(denali.flash_reg + DEVICE_ID) == 0x88)) > + acc_clks = 6; > + > + __raw_writel(acc_clks, denali.flash_reg + ACC_CLKS); > + __raw_writel(re_2_we, denali.flash_reg + RE_2_WE); > + __raw_writel(re_2_re, denali.flash_reg + RE_2_RE); > + __raw_writel(we_2_re, denali.flash_reg + WE_2_RE); > + __raw_writel(addr_2_data, denali.flash_reg + ADDR_2_DATA); > + __raw_writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT); > + __raw_writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT); > + __raw_writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT); > +} > + > +/* queries the NAND device to see what ONFI modes it supports. */ > +static uint16_t get_onfi_nand_para(void) > +{ > + int i; > + /* we needn't to do a reset here because driver has already > + * reset all the banks before > + * */ > + if (!(__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) & > + ONFI_TIMING_MODE__VALUE)) > + return FAIL; > + > + for (i = 5; i > 0; i--) { > + if (__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) & > + (0x01 << i)) > + break; > + } > + > + nand_onfi_timing_set(i); > + > + /* By now, all the ONFI devices we know support the page cache */ > + /* rw feature. So here we enable the pipeline_rw_ahead feature */ > + /* __raw_writel(1, denali.flash_reg + CACHE_WRITE_ENABLE); */ > + /* __raw_writel(1, denali.flash_reg + CACHE_READ_ENABLE); */ > + > + return PASS; > +} > + > +static void get_samsung_nand_para(uint8_t device_id) > +{ > + if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ > + /* Set timing register values according to datasheet */ > + __raw_writel(5, denali.flash_reg + ACC_CLKS); > + __raw_writel(20, denali.flash_reg + RE_2_WE); > + __raw_writel(12, denali.flash_reg + WE_2_RE); > + __raw_writel(14, denali.flash_reg + ADDR_2_DATA); > + __raw_writel(3, denali.flash_reg + RDWR_EN_LO_CNT); > + __raw_writel(2, denali.flash_reg + RDWR_EN_HI_CNT); > + __raw_writel(2, denali.flash_reg + CS_SETUP_CNT); > + } > +} > + > +static void get_toshiba_nand_para(void) > +{ > + uint32_t tmp; > + > + /* Workaround to fix a controller bug which reports a wrong */ > + /* spare area size for some kind of Toshiba NAND device */ > + if ((__raw_readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && > + (__raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE) > + == 64)){ > + __raw_writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE); > + tmp = __raw_readl(denali.flash_reg + DEVICES_CONNECTED) * > + __raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE); > + __raw_writel(tmp, > + denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE); > +#if SUPPORT_15BITECC > + __raw_writel(15, denali.flash_reg + ECC_CORRECTION); > +#elif SUPPORT_8BITECC > + __raw_writel(8, denali.flash_reg + ECC_CORRECTION); > +#endif > + } > +} > + > +static void get_hynix_nand_para(uint8_t device_id) > +{ > + uint32_t main_size, spare_size; > + > + switch (device_id) { > + case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ > + case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ > + __raw_writel(128, denali.flash_reg + PAGES_PER_BLOCK); > + __raw_writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE); > + __raw_writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE); > + main_size = 4096 * > + __raw_readl(denali.flash_reg + DEVICES_CONNECTED); > + spare_size = 224 * > + __raw_readl(denali.flash_reg + DEVICES_CONNECTED); > + __raw_writel(main_size, > + denali.flash_reg + LOGICAL_PAGE_DATA_SIZE); > + __raw_writel(spare_size, > + denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE); > + __raw_writel(0, denali.flash_reg + DEVICE_WIDTH); > +#if SUPPORT_15BITECC > + __raw_writel(15, denali.flash_reg + ECC_CORRECTION); > +#elif SUPPORT_8BITECC > + __raw_writel(8, denali.flash_reg + ECC_CORRECTION); > +#endif > + break; > + default: > + debug(KERN_WARNING > + "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." > + "Will use default parameter values instead.\n", > + device_id); > + } > +} > + > +/* determines how many NAND chips are connected to the controller. Note for > + * Intel CE4100 devices we don't support more than one device. > + */ > +static void find_valid_banks(void) > +{ > + uint32_t id[denali.max_banks]; > + int i; > + > + denali.total_used_banks = 1; > + for (i = 0; i < denali.max_banks; i++) { > + index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90); > + index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0); > + index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2), > + &id[i]); > + > + if (i == 0) { > + if (!(id[i] & 0x0ff)) > + break; /* WTF? */ > + } else { > + if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) > + denali.total_used_banks++; > + else > + break; > + } > + } > +} > + > +/* > + * Use the configuration feature register to determine the maximum number of > + * banks that the hardware supports. > + */ > +static void detect_max_banks(void) > +{ > + uint32_t features = __raw_readl(denali.flash_reg + FEATURES); > + denali.max_banks = 2 << (features & FEATURES__N_BANKS); > +} > + > +static void detect_partition_feature(void) > +{ > + /* For MRST platform, denali.fwblks represent the > + * number of blocks firmware is taken, > + * FW is in protect partition and MTD driver has no > + * permission to access it. So let driver know how many > + * blocks it can't touch. > + * */ > + if (__raw_readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) { > + if ((__raw_readl(denali.flash_reg + PERM_SRC_ID(1)) & > + PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { > + denali.fwblks = > + ((__raw_readl(denali.flash_reg + MIN_MAX_BANK(1)) & > + MIN_MAX_BANK__MIN_VALUE) * > + denali.blksperchip) > + + > + (__raw_readl(denali.flash_reg + MIN_BLK_ADDR(1)) & > + MIN_BLK_ADDR__VALUE); > + } else > + denali.fwblks = SPECTRA_START_BLOCK; > + } else > + denali.fwblks = SPECTRA_START_BLOCK; > +} > + > +static uint16_t denali_nand_timing_set(void) > +{ > + uint16_t status = PASS; > + uint32_t id_bytes[5], addr; > + uint8_t i, maf_id, device_id; > + > + /* Use read id method to get device ID and other > + * params. For some NAND chips, controller can't > + * report the correct device ID by reading from > + * DEVICE_ID register > + * */ > + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); > + index_addr((uint32_t)addr | 0, 0x90); > + index_addr((uint32_t)addr | 1, 0); > + for (i = 0; i < 5; i++) > + index_addr_read_data(addr | 2, &id_bytes[i]); > + maf_id = id_bytes[0]; > + device_id = id_bytes[1]; > + > + if (__raw_readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) & > + ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ > + if (FAIL == get_onfi_nand_para()) > + return FAIL; > + } else if (maf_id == 0xEC) { /* Samsung NAND */ > + get_samsung_nand_para(device_id); > + } else if (maf_id == 0x98) { /* Toshiba NAND */ > + get_toshiba_nand_para(); > + } else if (maf_id == 0xAD) { /* Hynix NAND */ > + get_hynix_nand_para(device_id); > + } > + > + find_valid_banks(); > + > + detect_partition_feature(); > + > + /* If the user specified to override the default timings > + * with a specific ONFI mode, we apply those changes here. > + */ > + if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) > + nand_onfi_timing_set(onfi_timing_mode); > + > + return status; > +} > + > +static void denali_set_intr_modes(uint16_t INT_ENABLE) > +{ > + if (INT_ENABLE) > + __raw_writel(1, denali.flash_reg + GLOBAL_INT_ENABLE); > + else > + __raw_writel(0, denali.flash_reg + GLOBAL_INT_ENABLE); > +} > + > +/* validation function to verify that the controlling software is making > + * a valid request > + */ > +static inline bool is_flash_bank_valid(int flash_bank) > +{ > + return (flash_bank >= 0 && flash_bank < 4); > +} > + > +static void denali_irq_init(void) > +{ > + uint32_t int_mask = 0; > + int i; > + > + /* Disable global interrupts */ > + denali_set_intr_modes(false); > + > + int_mask = DENALI_IRQ_ALL; > + > + /* Clear all status bits */ > + for (i = 0; i < denali.max_banks; ++i) > + __raw_writel(0xFFFF, denali.flash_reg + INTR_STATUS(i)); > + > + denali_irq_enable(int_mask); > +} > + > +/* This helper function setups the registers for ECC and whether or not > + * the spare area will be transferred. */ > +static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) > +{ > + int ecc_en_flag = 0, transfer_spare_flag = 0; > + > + /* set ECC, transfer spare bits if needed */ > + ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; > + transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; > + > + /* Enable spare area/ECC per user's request. */ > + __raw_writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE); > + /* applicable for MAP01 only */ > + __raw_writel(transfer_spare_flag, > + denali.flash_reg + TRANSFER_SPARE_REG); > +} > + > +/* sends a pipeline command operation to the controller. See the Denali NAND > + * controller's user guide for more information (section 4.2.3.6). > + */ > +static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare, > + int access_type, int op) > +{ > + uint32_t addr = 0x0, cmd = 0x0, irq_status = 0, irq_mask = 0; > + uint32_t page_count = 1; /* always read a page */ > + > + if (op == DENALI_READ) > + irq_mask = INTR_STATUS__LOAD_COMP; > + else if (op == DENALI_WRITE) > + irq_mask = INTR_STATUS__PROGRAM_COMP | > + INTR_STATUS__PROGRAM_FAIL; > + else > + BUG(); > + > + /* clear interrupts */ > + clear_interrupts(); > + > + /* setup ECC and transfer spare reg */ > + setup_ecc_for_xfer(ecc_en, transfer_spare); > + > + addr = BANK(denali.flash_bank) | denali.page; > + > + /* setup the acccess type */ > + cmd = MODE_10 | addr; > + index_addr((uint32_t)cmd, access_type); > + > + /* setup the pipeline command */ > + if (access_type == SPARE_ACCESS && op == DENALI_WRITE) > + index_addr((uint32_t)cmd, DENALI_BUFFER_WRITE); > + else if (access_type == SPARE_ACCESS && op == DENALI_READ) > + index_addr((uint32_t)cmd, DENALI_BUFFER_LOAD); > + else > + index_addr((uint32_t)cmd, 0x2000 | op | page_count); > + > + /* wait for command to be accepted */ > + irq_status = wait_for_irq(irq_mask); > + if ((irq_status & irq_mask) != irq_mask) > + return FAIL; > + > + if (access_type != SPARE_ACCESS) { > + cmd = MODE_01 | addr; > + __raw_writel(cmd, denali.flash_mem); > + } > + return PASS; > +} > + > +/* helper function that simply writes a buffer to the flash */ > +static int write_data_to_flash_mem(const uint8_t *buf, > + int len) > +{ > + uint32_t i = 0, *buf32; > + > + /* verify that the len is a multiple of 4. see comment in > + * read_data_from_flash_mem() */ > + BUG_ON((len % 4) != 0); > + > + /* write the data to the flash memory */ > + buf32 = (uint32_t *)buf; > + for (i = 0; i < len / 4; i++) > + __raw_writel(*buf32++, denali.flash_mem + 0x10); > + return i*4; /* intent is to return the number of bytes read */ > +} > + > +static void denali_mode_main_access(void) > +{ > + uint32_t addr, cmd; > + addr = BANK(denali.flash_bank) | denali.page; > + cmd = MODE_10 | addr; > + index_addr((uint32_t)cmd, MAIN_ACCESS); > +} > + > +static void denali_mode_main_spare_access(void) > +{ > + uint32_t addr, cmd; > + addr = BANK(denali.flash_bank) | denali.page; > + cmd = MODE_10 | addr; > + index_addr((uint32_t)cmd, MAIN_SPARE_ACCESS); > +} > + > +/* Writes OOB data to the device. > + * This code unused under normal U-Boot console as normally page write raw > + * to be used for write oob data with main data. > + */ > +static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) > +{ > + uint32_t cmd; > + > + denali.page = page; > + debug("* write_oob_data *\n"); > + > + /* We need to write to buffer first through MAP00 command */ > + cmd = MODE_00 | BANK(denali.flash_bank); > + __raw_writel(cmd, denali.flash_mem); > + > + /* send the data into flash buffer */ > + write_data_to_flash_mem(buf, mtd->oobsize); > + > + /* activate the write through MAP10 commands */ > + if (denali_send_pipeline_cmd(false, false, > + SPARE_ACCESS, DENALI_WRITE) != PASS) > + return -EIO; > + > + return 0; > +} > + > +/* this function examines buffers to see if they contain data that > + * indicate that the buffer is part of an erased region of flash. > + */ > +bool is_erased(uint8_t *buf, int len) > +{ > + int i = 0; > + for (i = 0; i < len; i++) > + if (buf[i] != 0xFF) > + return false; > + return true; > +} > + > + > +/* programs the controller to either enable/disable DMA transfers */ > +static void denali_enable_dma(bool en) > +{ > + uint32_t reg_val = 0x0; > + > + if (en) > + reg_val = DMA_ENABLE__FLAG; > + > + __raw_writel(reg_val, denali.flash_reg + DMA_ENABLE); > + __raw_readl(denali.flash_reg + DMA_ENABLE); > +} > + > +/* setups the HW to perform the data DMA */ > +static void denali_setup_dma_sequence(int op) > +{ > + const int page_count = 1; > + uint32_t mode; > + uint32_t addr = (uint32_t)denali.buf.dma_buf; > + > + mode = MODE_10 | BANK(denali.flash_bank); > + > + /* DMA is a four step process */ > + > + /* 1. setup transfer type and # of pages */ > + index_addr(mode | denali.page, 0x2000 | op | page_count); > + > + /* 2. set memory high address bits 23:8 */ > + index_addr(mode | ((uint16_t)(addr >> 16) << 8), 0x2200); > + > + /* 3. set memory low address bits 23:8 */ > + index_addr(mode | ((uint16_t)addr << 8), 0x2300); > + > + /* 4. interrupt when complete, burst len = 64 bytes*/ > + index_addr(mode | 0x14000, 0x2400); > +} > + > +/* Common DMA function */ > +static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer, > + uint32_t irq_mask, int oob_required) > +{ > + uint32_t irq_status = 0; > + /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */ > + setup_ecc_for_xfer(!raw_xfer, oob_required); > + > + /* clear any previous interrupt flags */ > + clear_interrupts(); > + > + /* enable the DMA */ > + denali_enable_dma(true); > + > + /* setup the DMA */ > + denali_setup_dma_sequence(ops); > + > + /* wait for operation to complete */ > + irq_status = wait_for_irq(irq_mask); > + > + /* if ECC fault happen, seems we need delay before turning off DMA. > + * If not, the controller will go into non responsive condition */ > + if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) > + udelay(100); > + > + /* disable the DMA */ > + denali_enable_dma(false); > + > + return irq_status; > +} > + > +static int write_page(struct mtd_info *mtd, struct nand_chip *chip, > + const uint8_t *buf, bool raw_xfer, int oob_required) > +{ > + uint32_t irq_status = 0; > + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; > + > + denali.status = PASS; > + > + /* copy buffer into DMA buffer */ > + memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize); > + > + /* need extra memcpoy for raw transfer */ > + if (raw_xfer) > + memcpy((void *)denali.buf.dma_buf + mtd->writesize, > + chip->oob_poi, mtd->oobsize); > + > + /* setting up DMA */ > + irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask, > + oob_required); > + > + /* if timeout happen, error out */ > + if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { > + debug("DMA timeout for denali write_page\n"); > + denali.status = NAND_STATUS_FAIL; > + return -EIO; > + } > + > + if (irq_status & INTR_STATUS__LOCKED_BLK) { > + debug("Failed as write to locked block\n"); > + denali.status = NAND_STATUS_FAIL; > + return -EIO; > + } > + return 0; > +} > + > +/* NAND core entry points */ > + > +/* > + * this is the callback that the NAND core calls to write a page. Since > + * writing a page with ECC or without is similar, all the work is done > + * by write_page above. > + */ > +static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, > + const uint8_t *buf, int oob_required) > +{ > + /* > + * for regular page writes, we let HW handle all the ECC > + * data written to the device. > + */ > + debug("denali_write_page at page %08x\n", denali.page); > + > + if (oob_required) > + /* switch to main + spare access */ > + denali_mode_main_spare_access(); > + else > + /* switch to main access only */ > + denali_mode_main_access(); > + > + return write_page(mtd, chip, buf, false, oob_required); > +} > + > +/* > + * This is the callback that the NAND core calls to write a page without ECC. > + * raw access is similar to ECC page writes, so all the work is done in the > + * write_page() function above. > + */ > +static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip > *chip, > + const uint8_t *buf, int oob_required) > +{ > + /* > + * for raw page writes, we want to disable ECC and simply write > + * whatever data is in the buffer. > + */ > + debug("denali_write_page_raw at page %08x\n", denali.page); > + > + if (oob_required) > + /* switch to main + spare access */ > + denali_mode_main_spare_access(); > + else > + /* switch to main access only */ > + denali_mode_main_access(); > + > + return write_page(mtd, chip, buf, true, oob_required); > +} > + > +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + return write_oob_data(mtd, chip->oob_poi, page); > +} > + > +/* raw include ECC value and all the spare area */ > +static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, > + uint8_t *buf, int oob_required, int page) > +{ > + uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; > + > + debug("denali_read_page_raw at page %08x\n", page); > + if (denali.page != page) { > + debug("Missing NAND_CMD_READ0 command\n"); > + return -EIO; > + } > + > + if (oob_required) > + /* switch to main + spare access */ > + denali_mode_main_spare_access(); > + else > + /* switch to main access only */ > + denali_mode_main_access(); > + > + /* setting up the DMA where ecc_enable is false */ > + irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask, > + oob_required); > + > + /* if timeout happen, error out */ > + if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { > + debug("DMA timeout for denali_read_page_raw\n"); > + return -EIO; > + } > + > + /* splitting the content to destination buffer holder */ > + memcpy(chip->oob_poi, (const void *)(denali.buf.dma_buf + > + mtd->writesize), mtd->oobsize); > + memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); > + debug("buf %02x %02x\n", buf[0], buf[1]); > + debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]); > + return 0; > +} > + > +static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, > + uint8_t *buf, int oob_required, int page) > +{ > + uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; > + > + debug("denali_read_page at page %08x\n", page); > + if (denali.page != page) { > + debug("Missing NAND_CMD_READ0 command\n"); > + return -EIO; > + } > + > + if (oob_required) > + /* switch to main + spare access */ > + denali_mode_main_spare_access(); > + else > + /* switch to main access only */ > + denali_mode_main_access(); > + > + /* setting up the DMA where ecc_enable is true */ > + irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask, > + oob_required); > + > + memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); > + debug("buf %02x %02x\n", buf[0], buf[1]); > + > + /* check whether any ECC error */ > + if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) { > + > + /* is the ECC cause by erase page, check using read_page_raw */ > + debug(" Uncorrected ECC detected\n"); > + denali_read_page_raw(mtd, chip, buf, oob_required, denali.page); > + > + if (is_erased(buf, mtd->writesize) == true && > + is_erased(chip->oob_poi, mtd->oobsize) == true) { > + debug(" ECC error cause by erased block\n"); > + /* false alarm, return the 0xFF */ > + } else > + return -EIO; > + } > + memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); > + return 0; > +} > + > +static uint8_t denali_read_byte(struct mtd_info *mtd) > +{ > + uint32_t addr, result; > + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); > + index_addr_read_data((uint32_t)addr | 2, &result); > + return (uint8_t)result & 0xFF; > +} > + > +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + debug("denali_read_oob at page %08x\n", page); > + denali.page = page; > + return denali_read_page_raw(mtd, chip, denali.buf.buf, 1, page); > +} > + > +static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) > +{ > + uint32_t i, addr, result; > + > + /* delay for tR (data transfer from Flash array to data register) */ > + udelay(25); > + > + /* ensure device completed else additional delay and polling */ > + wait_for_irq(INTR_STATUS__INT_ACT); > + > + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); > + for (i = 0; i < len; i++) { > + index_addr_read_data((uint32_t)addr | 2, &result); > + write_byte_to_buf(result); > + } > + memcpy(buf, denali.buf.buf, len); > +} > + > +static void denali_select_chip(struct mtd_info *mtd, int chip) > +{ > + denali.flash_bank = chip; > +} > + > +static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) > +{ > + int status = denali.status; > + denali.status = 0; > + > + return status; > +} > + > +static void denali_erase(struct mtd_info *mtd, int page) > +{ > + uint32_t cmd = 0x0, irq_status = 0; > + > + debug("denali_erase at page %08x\n", page); > + > + /* clear interrupts */ > + clear_interrupts(); > + > + /* setup page read request for access type */ > + cmd = MODE_10 | BANK(denali.flash_bank) | page; > + index_addr((uint32_t)cmd, 0x1); > + > + /* wait for erase to complete or failure to occur */ > + irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP | > + INTR_STATUS__ERASE_FAIL); > + > + if (irq_status & INTR_STATUS__ERASE_FAIL || > + irq_status & INTR_STATUS__LOCKED_BLK) > + denali.status = NAND_STATUS_FAIL; > + else > + denali.status = PASS; > +} > + > +static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, > + int page) > +{ > + uint32_t addr; > + > + switch (cmd) { > + case NAND_CMD_PAGEPROG: > + break; > + case NAND_CMD_STATUS: > + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); > + index_addr((uint32_t)addr | 0, cmd); > + break; > + case NAND_CMD_PARAM: > + clear_interrupts(); > + case NAND_CMD_READID: > + reset_buf(); > + /* sometimes ManufactureId read from register is not right > + * e.g. some of Micron MT29F32G08QAA MLC NAND chips > + * So here we send READID cmd to NAND insteand > + * */ > + addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); > + index_addr((uint32_t)addr | 0, cmd); > + index_addr((uint32_t)addr | 1, col & 0xFF); > + break; > + case NAND_CMD_READ0: > + case NAND_CMD_SEQIN: > + denali.page = page; > + break; > + case NAND_CMD_RESET: > + reset_bank(); > + break; > + case NAND_CMD_READOOB: > + /* TODO: Read OOB data */ > + break; > + case NAND_CMD_ERASE1: > + /* > + * supporting block erase only, not multiblock erase as > + * it will cross plane and software need complex calculation > + * to identify the block count for the cross plane > + */ > + denali_erase(mtd, page); > + break; > + case NAND_CMD_ERASE2: > + /* nothing to do here as it was done during NAND_CMD_ERASE1 */ > + break; > + case NAND_CMD_UNLOCK1: > + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page; > + index_addr((uint32_t)addr | 0, DENALI_UNLOCK_START); > + break; > + case NAND_CMD_UNLOCK2: > + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page; > + index_addr((uint32_t)addr | 0, DENALI_UNLOCK_END); > + break; > + case NAND_CMD_LOCK: > + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank); > + index_addr((uint32_t)addr | 0, DENALI_LOCK); > + break; > + case NAND_CMD_LOCK_TIGHT: > + addr = (uint32_t)MODE_10 | BANK(denali.flash_bank); > + index_addr((uint32_t)addr | 0, DENALI_LOCK_TIGHT); > + break; > + default: > + printf(": unsupported command received 0x%x\n", cmd); > + break; > + } > +} > + > +/* stubs for ECC functions not used by the NAND core */ > +static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, > + uint8_t *ecc_code) > +{ > + debug("Should not be called as ECC handled by hardware\n"); > + BUG(); > + return -EIO; > +} > + > +static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, > + uint8_t *read_ecc, uint8_t *calc_ecc) > +{ > + debug("Should not be called as ECC handled by hardware\n"); > + BUG(); > + return -EIO; > +} > + > +static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) > +{ > + debug("Should not be called as ECC handled by hardware\n"); > + BUG(); > +} > +/* end NAND core entry points */ > + > +/* Initialization code to bring the device up to a known good state */ > +static void denali_hw_init(void) > +{ > + /* > + * tell driver how many bit controller will skip before writing > + * ECC code in OOB. This is normally used for bad block marker > + */ > + __raw_writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES, > + denali.flash_reg + SPARE_AREA_SKIP_BYTES); > + detect_max_banks(); > + denali_nand_reset(); > + __raw_writel(0x0F, denali.flash_reg + RB_PIN_ENABLED); > + __raw_writel(CHIP_EN_DONT_CARE__FLAG, > + denali.flash_reg + CHIP_ENABLE_DONT_CARE); > + __raw_writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER); > + > + /* Should set value for these registers when init */ > + __raw_writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES); > + __raw_writel(1, denali.flash_reg + ECC_ENABLE); > + denali_nand_timing_set(); > + denali_irq_init(); > +} > + > +/* > + * Although controller spec said SLC ECC is forceb to be 4bit, but denali > + * controller in MRST only support 15bit and 8bit ECC correction > + */ > +#ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST > +#define ECC_15BITS 26 > +static struct nand_ecclayout nand_15bit_oob = { > + .eccbytes = ECC_15BITS, > +}; > +#else > +#define ECC_8BITS 14 > +static struct nand_ecclayout nand_8bit_oob = { > + .eccbytes = ECC_8BITS, > +}; > +#endif /* CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST */ > + > +void denali_nand_init(struct nand_chip *nand) > +{ > + denali.flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE; > + denali.flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE; > + > + nand->chip_delay = 0; > +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT > + /* check whether flash got BBT table (located at end of flash). As we > + * use NAND_BBT_NO_OOB, the BBT page will start with > + * bbt_pattern. We will have mirror pattern too */ > + nand->options |= NAND_BBT_USE_FLASH; > + /* > + * We are using main + spare with ECC support. As BBT need ECC support, > + * we need to ensure BBT code don't write to OOB for the BBT pattern. > + * All BBT info will be stored into data area with ECC support. > + */ > + nand->options |= NAND_BBT_NO_OOB; > +#endif > + > + nand->ecc.mode = NAND_ECC_HW; > + nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE; > + nand->ecc.read_oob = denali_read_oob; > + nand->ecc.write_oob = denali_write_oob; > + nand->ecc.read_page = denali_read_page; > + nand->ecc.read_page_raw = denali_read_page_raw; > + nand->ecc.write_page = denali_write_page; > + nand->ecc.write_page_raw = denali_write_page_raw; > +#ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST > + /* 15bit ECC */ > + nand->ecc.bytes = 26; > + nand->ecc.layout = &nand_15bit_oob; > +#else /* 8bit ECC */ > + nand->ecc.bytes = 14; > + nand->ecc.layout = &nand_8bit_oob; > +#endif > + nand->ecc.calculate = denali_ecc_calculate; > + nand->ecc.correct = denali_ecc_correct; > + nand->ecc.hwctl = denali_ecc_hwctl; > + > + /* Set address of hardware control function */ > + nand->cmdfunc = denali_cmdfunc; > + nand->read_byte = denali_read_byte; > + nand->read_buf = denali_read_buf; > + nand->select_chip = denali_select_chip; > + nand->waitfunc = denali_waitfunc; > + denali_hw_init(); > +} > + > +int board_nand_init(struct nand_chip *chip) > +{ > + puts("NAND: Denali NAND controller\n"); > + denali_nand_init(chip); > + return 0; > +} > diff --git a/drivers/mtd/nand/denali_nand.h b/drivers/mtd/nand/denali_nand.h > new file mode 100644 > index 0000000..fd91c64 > --- /dev/null > +++ b/drivers/mtd/nand/denali_nand.h > @@ -0,0 +1,501 @@ > +/* > + * Copyright (C) 2013 Altera Corporation <www.altera.com> > + * Copyright (C) 2009-2010, Intel Corporation and its suppliers. > + * > + * SPDX-License-Identifier: GPL-2.0+ > + */ > + > +typedef int irqreturn_t; > + > +#define IRQ_HANDLED 1 > +#define IRQ_NONE 0 > + > +#define DEVICE_RESET 0x0 > +#define DEVICE_RESET__BANK0 0x0001 > +#define DEVICE_RESET__BANK1 0x0002 > +#define DEVICE_RESET__BANK2 0x0004 > +#define DEVICE_RESET__BANK3 0x0008 > + > +#define TRANSFER_SPARE_REG 0x10 > +#define TRANSFER_SPARE_REG__FLAG 0x0001 > + > +#define LOAD_WAIT_CNT 0x20 > +#define LOAD_WAIT_CNT__VALUE 0xffff > + > +#define PROGRAM_WAIT_CNT 0x30 > +#define PROGRAM_WAIT_CNT__VALUE 0xffff > + > +#define ERASE_WAIT_CNT 0x40 > +#define ERASE_WAIT_CNT__VALUE 0xffff > + > +#define INT_MON_CYCCNT 0x50 > +#define INT_MON_CYCCNT__VALUE 0xffff > + > +#define RB_PIN_ENABLED 0x60 > +#define RB_PIN_ENABLED__BANK0 0x0001 > +#define RB_PIN_ENABLED__BANK1 0x0002 > +#define RB_PIN_ENABLED__BANK2 0x0004 > +#define RB_PIN_ENABLED__BANK3 0x0008 > + > +#define MULTIPLANE_OPERATION 0x70 > +#define MULTIPLANE_OPERATION__FLAG 0x0001 > + > +#define MULTIPLANE_READ_ENABLE 0x80 > +#define MULTIPLANE_READ_ENABLE__FLAG 0x0001 > + > +#define COPYBACK_DISABLE 0x90 > +#define COPYBACK_DISABLE__FLAG 0x0001 > + > +#define CACHE_WRITE_ENABLE 0xa0 > +#define CACHE_WRITE_ENABLE__FLAG 0x0001 > + > +#define CACHE_READ_ENABLE 0xb0 > +#define CACHE_READ_ENABLE__FLAG 0x0001 > + > +#define PREFETCH_MODE 0xc0 > +#define PREFETCH_MODE__PREFETCH_EN 0x0001 > +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0 > + > +#define CHIP_ENABLE_DONT_CARE 0xd0 > +#define CHIP_EN_DONT_CARE__FLAG 0x01 > + > +#define ECC_ENABLE 0xe0 > +#define ECC_ENABLE__FLAG 0x0001 > + > +#define GLOBAL_INT_ENABLE 0xf0 > +#define GLOBAL_INT_EN_FLAG 0x01 > + > +#define WE_2_RE 0x100 > +#define WE_2_RE__VALUE 0x003f > + > +#define ADDR_2_DATA 0x110 > +#define ADDR_2_DATA__VALUE 0x003f > + > +#define RE_2_WE 0x120 > +#define RE_2_WE__VALUE 0x003f > + > +#define ACC_CLKS 0x130 > +#define ACC_CLKS__VALUE 0x000f > + > +#define NUMBER_OF_PLANES 0x140 > +#define NUMBER_OF_PLANES__VALUE 0x0007 > + > +#define PAGES_PER_BLOCK 0x150 > +#define PAGES_PER_BLOCK__VALUE 0xffff > + > +#define DEVICE_WIDTH 0x160 > +#define DEVICE_WIDTH__VALUE 0x0003 > + > +#define DEVICE_MAIN_AREA_SIZE 0x170 > +#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff > + > +#define DEVICE_SPARE_AREA_SIZE 0x180 > +#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff > + > +#define TWO_ROW_ADDR_CYCLES 0x190 > +#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001 > + > +#define MULTIPLANE_ADDR_RESTRICT 0x1a0 > +#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001 > + > +#define ECC_CORRECTION 0x1b0 > +#define ECC_CORRECTION__VALUE 0x001f > + > +#define READ_MODE 0x1c0 > +#define READ_MODE__VALUE 0x000f > + > +#define WRITE_MODE 0x1d0 > +#define WRITE_MODE__VALUE 0x000f > + > +#define COPYBACK_MODE 0x1e0 > +#define COPYBACK_MODE__VALUE 0x000f > + > +#define RDWR_EN_LO_CNT 0x1f0 > +#define RDWR_EN_LO_CNT__VALUE 0x001f > + > +#define RDWR_EN_HI_CNT 0x200 > +#define RDWR_EN_HI_CNT__VALUE 0x001f > + > +#define MAX_RD_DELAY 0x210 > +#define MAX_RD_DELAY__VALUE 0x000f > + > +#define CS_SETUP_CNT 0x220 > +#define CS_SETUP_CNT__VALUE 0x001f > + > +#define SPARE_AREA_SKIP_BYTES 0x230 > +#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f > + > +#define SPARE_AREA_MARKER 0x240 > +#define SPARE_AREA_MARKER__VALUE 0xffff > + > +#define DEVICES_CONNECTED 0x250 > +#define DEVICES_CONNECTED__VALUE 0x0007 > + > +#define DIE_MASK 0x260 > +#define DIE_MASK__VALUE 0x00ff > + > +#define FIRST_BLOCK_OF_NEXT_PLANE 0x270 > +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff > + > +#define WRITE_PROTECT 0x280 > +#define WRITE_PROTECT__FLAG 0x0001 > + > +#define RE_2_RE 0x290 > +#define RE_2_RE__VALUE 0x003f > + > +#define MANUFACTURER_ID 0x300 > +#define MANUFACTURER_ID__VALUE 0x00ff > + > +#define DEVICE_ID 0x310 > +#define DEVICE_ID__VALUE 0x00ff > + > +#define DEVICE_PARAM_0 0x320 > +#define DEVICE_PARAM_0__VALUE 0x00ff > + > +#define DEVICE_PARAM_1 0x330 > +#define DEVICE_PARAM_1__VALUE 0x00ff > + > +#define DEVICE_PARAM_2 0x340 > +#define DEVICE_PARAM_2__VALUE 0x00ff > + > +#define LOGICAL_PAGE_DATA_SIZE 0x350 > +#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff > + > +#define LOGICAL_PAGE_SPARE_SIZE 0x360 > +#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff > + > +#define REVISION 0x370 > +#define REVISION__VALUE 0xffff > + > +#define ONFI_DEVICE_FEATURES 0x380 > +#define ONFI_DEVICE_FEATURES__VALUE 0x003f > + > +#define ONFI_OPTIONAL_COMMANDS 0x390 > +#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f > + > +#define ONFI_TIMING_MODE 0x3a0 > +#define ONFI_TIMING_MODE__VALUE 0x003f > + > +#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 > +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f > + > +#define ONFI_DEVICE_NO_OF_LUNS 0x3c0 > +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff > +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100 > + > +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 > +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff > + > +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 > +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff > + > +#define FEATURES 0x3f0 > +#define FEATURES__N_BANKS 0x0003 > +#define FEATURES__ECC_MAX_ERR 0x003c > +#define FEATURES__DMA 0x0040 > +#define FEATURES__CMD_DMA 0x0080 > +#define FEATURES__PARTITION 0x0100 > +#define FEATURES__XDMA_SIDEBAND 0x0200 > +#define FEATURES__GPREG 0x0400 > +#define FEATURES__INDEX_ADDR 0x0800 > + > +#define TRANSFER_MODE 0x400 > +#define TRANSFER_MODE__VALUE 0x0003 > + > +#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50)) > +#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50)) > + > +/* > + * Some versions of the IP have the ECC fixup handled in hardware. In this > + * configuration we only get interrupted when the error is uncorrectable. > + * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the > + * old IP. > + */ > +#define INTR_STATUS__ECC_UNCOR_ERR 0x0001 > +#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001 > +#define INTR_STATUS__ECC_ERR 0x0002 > +#define INTR_STATUS__DMA_CMD_COMP 0x0004 > +#define INTR_STATUS__TIME_OUT 0x0008 > +#define INTR_STATUS__PROGRAM_FAIL 0x0010 > +#define INTR_STATUS__ERASE_FAIL 0x0020 > +#define INTR_STATUS__LOAD_COMP 0x0040 > +#define INTR_STATUS__PROGRAM_COMP 0x0080 > +#define INTR_STATUS__ERASE_COMP 0x0100 > +#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200 > +#define INTR_STATUS__LOCKED_BLK 0x0400 > +#define INTR_STATUS__UNSUP_CMD 0x0800 > +#define INTR_STATUS__INT_ACT 0x1000 > +#define INTR_STATUS__RST_COMP 0x2000 > +#define INTR_STATUS__PIPE_CMD_ERR 0x4000 > +#define INTR_STATUS__PAGE_XFER_INC 0x8000 > + > +#define INTR_EN__ECC_TRANSACTION_DONE 0x0001 > +#define INTR_EN__ECC_ERR 0x0002 > +#define INTR_EN__DMA_CMD_COMP 0x0004 > +#define INTR_EN__TIME_OUT 0x0008 > +#define INTR_EN__PROGRAM_FAIL 0x0010 > +#define INTR_EN__ERASE_FAIL 0x0020 > +#define INTR_EN__LOAD_COMP 0x0040 > +#define INTR_EN__PROGRAM_COMP 0x0080 > +#define INTR_EN__ERASE_COMP 0x0100 > +#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200 > +#define INTR_EN__LOCKED_BLK 0x0400 > +#define INTR_EN__UNSUP_CMD 0x0800 > +#define INTR_EN__INT_ACT 0x1000 > +#define INTR_EN__RST_COMP 0x2000 > +#define INTR_EN__PIPE_CMD_ERR 0x4000 > +#define INTR_EN__PAGE_XFER_INC 0x8000 > + > +#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50)) > +#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50)) > +#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50)) > + > +#define DATA_INTR 0x550 > +#define DATA_INTR__WRITE_SPACE_AV 0x0001 > +#define DATA_INTR__READ_DATA_AV 0x0002 > + > +#define DATA_INTR_EN 0x560 > +#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001 > +#define DATA_INTR_EN__READ_DATA_AV 0x0002 > + > +#define GPREG_0 0x570 > +#define GPREG_0__VALUE 0xffff > + > +#define GPREG_1 0x580 > +#define GPREG_1__VALUE 0xffff > + > +#define GPREG_2 0x590 > +#define GPREG_2__VALUE 0xffff > + > +#define GPREG_3 0x5a0 > +#define GPREG_3__VALUE 0xffff > + > +#define ECC_THRESHOLD 0x600 > +#define ECC_THRESHOLD__VALUE 0x03ff > + > +#define ECC_ERROR_BLOCK_ADDRESS 0x610 > +#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff > + > +#define ECC_ERROR_PAGE_ADDRESS 0x620 > +#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff > +#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000 > + > +#define ECC_ERROR_ADDRESS 0x630 > +#define ECC_ERROR_ADDRESS__OFFSET 0x0fff > +#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000 > + > +#define ERR_CORRECTION_INFO 0x640 > +#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff > +#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00 > +#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000 > +#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000 > + > +#define DMA_ENABLE 0x700 > +#define DMA_ENABLE__FLAG 0x0001 > + > +#define IGNORE_ECC_DONE 0x710 > +#define IGNORE_ECC_DONE__FLAG 0x0001 > + > +#define DMA_INTR 0x720 > +#define DMA_INTR__TARGET_ERROR 0x0001 > +#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002 > +#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004 > +#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008 > +#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010 > +#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020 > + > +#define DMA_INTR_EN 0x730 > +#define DMA_INTR_EN__TARGET_ERROR 0x0001 > +#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002 > +#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004 > +#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008 > +#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010 > +#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020 > + > +#define TARGET_ERR_ADDR_LO 0x740 > +#define TARGET_ERR_ADDR_LO__VALUE 0xffff > + > +#define TARGET_ERR_ADDR_HI 0x750 > +#define TARGET_ERR_ADDR_HI__VALUE 0xffff > + > +#define CHNL_ACTIVE 0x760 > +#define CHNL_ACTIVE__CHANNEL0 0x0001 > +#define CHNL_ACTIVE__CHANNEL1 0x0002 > +#define CHNL_ACTIVE__CHANNEL2 0x0004 > +#define CHNL_ACTIVE__CHANNEL3 0x0008 > + > +#define ACTIVE_SRC_ID 0x800 > +#define ACTIVE_SRC_ID__VALUE 0x00ff > + > +#define PTN_INTR 0x810 > +#define PTN_INTR__CONFIG_ERROR 0x0001 > +#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002 > +#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004 > +#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008 > +#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010 > +#define PTN_INTR__REG_ACCESS_ERROR 0x0020 > + > +#define PTN_INTR_EN 0x820 > +#define PTN_INTR_EN__CONFIG_ERROR 0x0001 > +#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002 > +#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004 > +#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008 > +#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 > +#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020 > + > +#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40)) > +#define PERM_SRC_ID__SRCID 0x00ff > +#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800 > +#define PERM_SRC_ID__WRITE_ACTIVE 0x2000 > +#define PERM_SRC_ID__READ_ACTIVE 0x4000 > +#define PERM_SRC_ID__PARTITION_VALID 0x8000 > + > +#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40)) > +#define MIN_BLK_ADDR__VALUE 0xffff > + > +#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40)) > +#define MAX_BLK_ADDR__VALUE 0xffff > + > +#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40)) > +#define MIN_MAX_BANK__MIN_VALUE 0x0003 > +#define MIN_MAX_BANK__MAX_VALUE 0x000c > + > + > +/* ffsdefs.h */ > +#define CLEAR 0 /*use this to clear a field instead of > "fail"*/ > +#define SET 1 /*use this to set a field instead of "pass"*/ > +#define FAIL 1 /*failed flag*/ > +#define PASS 0 /*success flag*/ > +#define ERR -1 /*error flag*/ > + > +/* lld.h */ > +#define GOOD_BLOCK 0 > +#define DEFECTIVE_BLOCK 1 > +#define READ_ERROR 2 > + > +#define CLK_X 5 > +#define CLK_MULTI 4 > + > +/* spectraswconfig.h */ > +#define CMD_DMA 0 > + > +#define SPECTRA_PARTITION_ID 0 > +/**** Block Table and Reserved Block Parameters *****/ > +#define SPECTRA_START_BLOCK 3 > +#define NUM_FREE_BLOCKS_GATE 30 > + > +/* KBV - Updated to LNW scratch register address */ > +#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR > +#define SCRATCH_REG_SIZE 64 > + > +#define GLOB_HWCTL_DEFAULT_BLKS 2048 > + > +#define SUPPORT_15BITECC 1 > +#define SUPPORT_8BITECC 1 > + > +#define CUSTOM_CONF_PARAMS 0 > + > +#define ONFI_BLOOM_TIME 1 > +#define MODE5_WORKAROUND 0 > + > +/* lld_nand.h */ > +/* > + * NAND Flash Controller Device Driver > + * Copyright (c) 2009, Intel Corporation and its suppliers. > + * > + * This program is free software; you can redistribute it and/or modify it > + * under the terms and conditions of the GNU General Public License, > + * version 2, as published by the Free Software Foundation. > + * > + * This program is distributed in the hope it will be useful, but WITHOUT > + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or > + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for > + * more details. > + * > + * You should have received a copy of the GNU General Public License along > with > + * this program; if not, write to the Free Software Foundation, Inc., > + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. > + * > + */ > + > +#ifndef _LLD_NAND_ > +#define _LLD_NAND_ > + > +#define MODE_00 0x00000000 > +#define MODE_01 0x04000000 > +#define MODE_10 0x08000000 > +#define MODE_11 0x0C000000 > + > + > +#define DATA_TRANSFER_MODE 0 > +#define PROTECTION_PER_BLOCK 1 > +#define LOAD_WAIT_COUNT 2 > +#define PROGRAM_WAIT_COUNT 3 > +#define ERASE_WAIT_COUNT 4 > +#define INT_MONITOR_CYCLE_COUNT 5 > +#define READ_BUSY_PIN_ENABLED 6 > +#define MULTIPLANE_OPERATION_SUPPORT 7 > +#define PRE_FETCH_MODE 8 > +#define CE_DONT_CARE_SUPPORT 9 > +#define COPYBACK_SUPPORT 10 > +#define CACHE_WRITE_SUPPORT 11 > +#define CACHE_READ_SUPPORT 12 > +#define NUM_PAGES_IN_BLOCK 13 > +#define ECC_ENABLE_SELECT 14 > +#define WRITE_ENABLE_2_READ_ENABLE 15 > +#define ADDRESS_2_DATA 16 > +#define READ_ENABLE_2_WRITE_ENABLE 17 > +#define TWO_ROW_ADDRESS_CYCLES 18 > +#define MULTIPLANE_ADDRESS_RESTRICT 19 > +#define ACC_CLOCKS 20 > +#define READ_WRITE_ENABLE_LOW_COUNT 21 > +#define READ_WRITE_ENABLE_HIGH_COUNT 22 > + > +#define ECC_SECTOR_SIZE 512 > + > +#define DENALI_BUF_SIZE (NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) > + > +struct nand_buf { > + int head; > + int tail; > + /* seprating dma_buf as buf can be used for status read purpose */ > + uint8_t dma_buf[DENALI_BUF_SIZE] __aligned(64); > + uint8_t buf[DENALI_BUF_SIZE]; > +}; > + > +#define INTEL_CE4100 1 > +#define INTEL_MRST 2 > +#define DT 3 > + > +struct denali_nand_info { > + struct mtd_info mtd; > + struct nand_chip *nand; > + > + int flash_bank; /* currently selected chip */ > + int status; > + int platform; > + struct nand_buf buf; > + struct device *dev; > + int total_used_banks; > + uint32_t block; /* stored for future use */ > + uint32_t page; > + void __iomem *flash_reg; /* Mapped io reg base address */ > + void __iomem *flash_mem; /* Mapped io reg base address */ > + > + /* elements used by ISR */ > + /*struct completion complete;*/ > + > + uint32_t irq_status; > + int irq_debug_array[32]; > + int idx; > + int irq; > + > + uint32_t devnum; /* represent how many nands connected */ > + uint32_t fwblks; /* represent how many blocks FW used */ > + uint32_t totalblks; > + uint32_t blksperchip; > + uint32_t bbtskipbytes; > + uint32_t max_banks; > +}; > + > +#endif /*_LLD_NAND_*/ _______________________________________________ U-Boot mailing list U-Boot@lists.denx.de http://lists.denx.de/mailman/listinfo/u-boot