On Mon, May 21, 2018 at 4:59 PM, Peter Otten <__pete...@web.de> wrote:
> Asif Iqbal wrote: > > > On Mon, May 21, 2018 at 9:28 AM, Peter Otten <__pete...@web.de> wrote: > > > >> Asif Iqbal wrote: > >> > >> > Hi, > >> > > >> > I am trying to add a new row to a new date in the dataframe like below > >> > > >> > df.loc['2018-01-24'] = [0,1,2,3,4,5] > >> > > >> > And I am getting the following error > >> > > >> > ValueError: cannot set using a list-like indexer with a different > >> length > >> > than the value > >> > > >> > I do have the right number of columns and I can lookup a row by the > >> > date > >> > > >> > df.loc['2018-01-23'] > >> > > >> > df.shape > >> > (8034, 6) > >> > > >> > df.index > >> > DatetimeIndex(['2018-01-23', '2018-01-22', '2018-01-19', > >> > '2018-01-18', > >> > '2018-01-17', '2018-01-16', '2018-01-12', '2018-01-11', > >> > '2018-01-10', '2018-01-09', > >> > ... > >> > '1986-03-25', '1986-03-24', '1986-03-21', '1986-03-20', > >> > '1986-03-19', '1986-03-18', '1986-03-17', '1986-03-14', > >> > '1986-03-13', '2018-01-24'], > >> > dtype='datetime64[ns]', name='date', length=8034, > >> freq=None) > >> > > >> > Any idea how to add a new row to a new date? > >> > >> My experiments indicate that there may be multiple values with the same > >> key: > >> > >> > >>> import pandas as pd > >> >>> df = pd.DataFrame([[1,2], [3,4], [5,6], [7,8]], index=["a", "b", > "a", > >> "a"]) > >> >>> df.loc["a"] > >> 0 1 > >> a 1 2 > >> a 5 6 > >> a 7 8 > >> > >> [3 rows x 2 columns] > >> >>> df.loc["a"] = [10, 20] > >> Traceback (most recent call last): > >> File "<stdin>", line 1, in <module> > >> File "/usr/lib/python3/dist-packages/pandas/core/indexing.py", line > 98, > >> in > >> __setitem__ > >> self._setitem_with_indexer(indexer, value) > >> File "/usr/lib/python3/dist-packages/pandas/core/indexing.py", line > >> 422, > >> in _setitem_with_indexer > >> self.obj._data = self.obj._data.setitem(indexer, value) > >> File "/usr/lib/python3/dist-packages/pandas/core/internals.py", line > >> 2396, > >> in setitem > >> return self.apply('setitem', *args, **kwargs) > >> File "/usr/lib/python3/dist-packages/pandas/core/internals.py", line > >> 2376, > >> in apply > >> applied = getattr(blk, f)(*args, **kwargs) > >> File "/usr/lib/python3/dist-packages/pandas/core/internals.py", line > >> 615, > >> in setitem > >> raise ValueError("cannot set using a list-like indexer " > >> ValueError: cannot set using a list-like indexer with a different length > >> than the value > >> > >> If found two ways to resolve this, > >> > >> (1) the obvious, ensure that the lengths are the same: > >> > >> >>> df.loc["a"] = [[10, 20], [30, 40], [50, 60]] > >> >>> df > >> 0 1 > >> a 10 20 > >> b 3 4 > >> a 30 40 > >> a 50 60 > >> > >> (2) pass the key as a tuple: > >> > >> >>> df.loc["a",] = [1000, 2000] > >> >>> df > >> 0 1 > >> a 1000 2000 > >> b 3 4 > >> a 1000 2000 > >> a 1000 2000 > >> > >> [4 rows x 2 columns] > >> > >> I suspect that you want neither, and instead avoid duplicate keys. > > > > > > > > I want to overwrite the row > > > > print ( df.loc['2018-01-24'] ) > > 2018-01-24 0.0 1.0 2.0 3.0 4.0 NaN > > > > > > df.loc['2018-01-24'] = [0,1,2,3,4,5] > > ValueError: cannot set using a list-like indexer with a different > length > > than the value > > Can you post a self-contained example, i. e. a small script that also > creates a -- hopefully small -- DataFrame and then triggers the ValueError? > > It is working after I ran a df = df.sort_index() I was looping through new dates and feeding predicted data to new row for next day, but I was going in the wrong direction. -- Asif Iqbal PGP Key: 0xE62693C5 KeyServer: pgp.mit.edu A: Because it messes up the order in which people normally read text. Q: Why is top-posting such a bad thing? _______________________________________________ Tutor maillist - Tutor@python.org To unsubscribe or change subscription options: https://mail.python.org/mailman/listinfo/tutor