
Internet Engineering Task Force H. Wang, Ed.
Internet-Draft Y. Yang
Intended status: Standards Track X. Kang
Expires: September 3, 2018 Huawei Technology Pte. Ltd.
 March 2, 2018

 Using Identity as Raw Public Key in Transport Layer Security (TLS) and
 Datagram Transport Layer Security (DTLS)
 draft-wang-tls-raw-public-key-with-ibc-00

Abstract

 This document specifies the use of identity as a raw public key in
 Transport Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS). The protocol procedures are kept unchanged, but cipher
 suites are extended to support Identity-based signature (IBS). The
 example OID tables in the RFC 7250 [RFC7250] are expanded with OIDs
 specific to the IBC-based signature algorithms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Wang, et al. Expires September 3, 2018 [Page 1]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terms . 4
 3. Extension of RAW Public Key to IBC-based Identity 4
 4. Parameters for Signature Verification 5
 5. New Key Exchange Algorithms and Cipher Suites 6
 6. TLS Client and Server Handshake Behavior 6
 6.1. Client Hello . 7
 6.2. Server Hello . 7
 6.3. Client Authentication 8
 6.4. Server Authentication 8
 7. Examples . 9
 7.1. TLS Client and Server Use ECCSI 9
 7.2. Combined Usage of Raw Public Keys and X.509 Certificates 10
 8. Security Considerations 11
 9. IANA Considerations . 11
 10. Acknowledgements . 11
 11. References . 11
 11.1. Normative References 11
 11.2. Informative References 12
 Appendix A. Examples . 12
 Authors’ Addresses . 12

1. Introduction

 DISCLAIMER: This is a personal draft and has not yet seen significant
 security analysis.

 Traditionally, TLS/DTLS client and server exchange public keys
 endorsed by PKIX [PKIX] certificates. It is considered complicate
 and may cause security weaknesses with the use of PKIX certificates
 [Defeating-SSL]. To simplify certificates exchange, using RAW public
 key in TLS/DTLS has been specified in RFC 7250. That is, instead of
 transmitting a full certificate in the TLS messages, only public keys
 are exchanged between client and server. However, an out-of-band
 mechanism for public key and identity binding is assumed.

 Recently, 3GPP has adopted the EAP authentication framework for 5G
 and EAP-TLS is considered as one of candidate authentication methods
 for private networks, especially for networks with a large number of
 IOT devices. For IOT networks, TLS/DTLS with RAW public key is
 particularly attractive, but binding identities with public keys
 might be challenging. The cost to maintain a large table for

Wang, et al. Expires September 3, 2018 [Page 2]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

 identity and public key mapping at server side incurrs additional
 maintenance cost. e.g. devices have to pre-register to the server.

 To simplify the binding between the public key and the entity
 presenting the public key, a better way could be using Identity-Based
 Cryptography(IBC), such as ECCSI public key specified in RFC 6507,
 for authentication. Different from X.509 certificates and raw public
 keys, a public key in IBC takes the form of the entity’s identity.
 This helps eliminate the necessity of binding between a public key
 and the entity presenting the public key.

 The concept of IBC was first proposed by Adi Shamir in 1984. As a
 special class of public key cryptography, IBC uses a user’s identity
 as public key, avoiding the hassle of public key certification in
 public key cryptosystems. IBC broadly includes IBE (Identity-based
 Encryption) and IBS (Identity-based Signature). For an IBC system to
 work, there exists a trusted third party, PKG (private key generator)
 responsible for issuing private keys to the users. In particular,
 the PKG has in possession a pair of Master Public Key and Master
 Secret Key; a private key is generated based on the user’s identity
 by using the Master Secret key, while the Master Public key is used
 together with the user’s identities for encryption (in case of IBE)
 and signature verification (in case of IBS).

 A number of IBE and IBS algorithms have been standardized by
 different standardization bodies, such as IETF, IEEE, and ISO/IEC.
 For example, IETF has specified several RFCs such as RFC 5091
 [RFC5091], RFC 6507 [RFC6507] and RFC6508 [RFC6508] for both IBE and
 IBS algorithms. ISO/JTC and IEEE also have a few standards on IBC
 algorithms.

 RFC 7250 has specified the use of raw public key with TLS/DTLS
 protocol. Example OIDs for RSA, DSA, ECDSA algorithms have been
 given. However, supporting of IBS algorithms has not been included
 therein. Since IBC algorithms are efficient in public key
 transmission and also eliminate the binding between public keys and
 identities, in this document, an amendment to RFC 7250 is added for
 supporting IBS algorithms.

 The document is orgranized as follows: Section 3 explains the use of
 identity as raw public key when IBS algorithms are chosen as the
 underlying digital signature mechanism, and example OIDs for IBS
 algorithms are given. Section 4 discusses provision of the global
 parameters used with the IBS algorithms. Section 5 discusses the
 security considerations.

Wang, et al. Expires September 3, 2018 [Page 3]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

2. Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Extension of RAW Public Key to IBC-based Identity

 In RFC 7250, a new Certificate structure is defined with two types,
 X.509 and RawPublicKey. When raw public key is used in TLS,
 RawPublicKey type is selected and a data strucutre
 subjectPublicKeyInfo is used to specify the raw public key and its
 cryptographic algorithm. Within the subjectPublicKeyInfo structure,
 two fields, algorithm and parameters, are defined. The algorithm
 specifies the cryptographic algorithm used with raw public key, which
 is represented by an object Identifiers (OID); and the parameters
 field provides necessary parameters associated with the algorithm.

 subjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 Figure 1: SubjectECCSIPublicKeyInfo ASN.1 Structure

 When using an IBS algorithm, an identity is used as raw public key,
 which can be coverted to an OCTET string. Therefore, the Certificate
 and subjectPublicKey structure can be reused without changes. No OID
 for an IBS algorithm has been given as examples in [RFC 7250]. It is
 known that there are a few standardized IBS algorithms, therefore, in
 what follows several exmaples of OIDs for IBS algorithms are given.

 The OIDs for some IBC-based Signature algorithmsare listed in the
 following table.

Wang, et al. Expires September 3, 2018 [Page 4]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

 +----------------------+--------------------+-----------------------+
 | Key Type | Document | OID |
 +----------------------+--------------------+-----------------------+
ISO/IEC 14888-3	ISO/IEC 14888-3:	1.0.14888.3.0.7
ibs-1	IBS-1 mechansim	
	(Identity-Based	
	Signature)	
+----------------------+--------------------+-----------------------+		
ISO/IEC 14888-3	ISO/IEC 14888-3:	1.0.14888.3.0.8
ibs-2	IBS-2 mechansim	
	(Identity-Based	
	Signature)	
+----------------------+--------------------+-----------------------+		
SM9-1 Digital	SM9-1 Digital	1.2.156.10197.1.302.1
Signature Algorithm	Signature	
	Algorithm	
+----------------------+--------------------+-----------------------+		
Elliptic Curve-Based	Section 5.2 in RFC	1.3.6.1.5.x (need to
Signatureless For	6507	apply)
Identitiy-based		
Encryption (ECCSI)		
 +----------------------+--------------------+-----------------------+

 Table 1: Algorithm Object Identifiers

 In particular, ISO/IEC 14888-3 specifies two IBS algorithms, IBS-1
 and IBS-2. The ECCSI is an IBS algorithm that is specified in IETF
 [RFC 6507]. SM9-1 is a Chinese standard for an IBS algorithm.
 Recently it has been accepted by ISO/IEC 14888-3

 How are the paramters of AlgorithmIdentifier specified?

4. Parameters for Signature Verification

 Using IBS algorithm in TLS/DTLS for raw public key exempts client and
 server from public key certification and identity binding. This is
 achieved by checking an entity’s signatures and its identity against
 the master public key of its PKG. With IBS algorithm, a PKG
 generates private keys for entities based on their identities.
 Global parameters such as PKG’s Master Public Key (MPK) need be
 provisioned to both client and server side. These parameters are not
 user specific, but PKG specific.

 For a client, PKG specific parameters can be provioned, at the time
 PKG provisons the private key to the client. For the server, how to
 get the PKG specific parameters provisioned is out of the scope of
 this document, and it is depolyment dependent.

Wang, et al. Expires September 3, 2018 [Page 5]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

5. New Key Exchange Algorithms and Cipher Suites

 To support identity as raw public key, new key exchange algorithms
 corresponding to the IBS algorithms need to be defined. The signing
 capability of the IBS algorithms is to be exploited, thus existing
 key exchange algorithms making use of ephemeral DH are extended to
 accomodate the support of the IBS algorithms. Considering the
 performance and the compatibility with the use of ECDSA in TLS (see
 RFC 4492), this specification proposes to support the IBS algorithm,
 ECCSI, defined in RFC 6507 [RFC6507]. As a reult, the table below
 summarizes the new key exchange algorithm, which mimics ECDHE_ECDSA
 (see RFC 4492).

 +-------------------------+---------------------------------------+
 | Key Exchange Algorithm | Description |
 +-------------------------+---------------------------------------+
 | ECDHE_ECCSI | Ephemeral ECDH with ECCSI signatures |
 +-------------------------+---------------------------------------+

 Table 2: Algorithm Object Identifiers

 Note: The specification of ECDHE_ECCSI can follow ECHDE_ECDSA by
 substituting ECDSA with ECCSI. The detailed specification will be
 provided in the future

 Note: Other key exchange algorithm with other IBS algorithm may be
 added in the future.

 Accordingly, below defines the new cipher suites that use the above
 new key exchange algorithms.

 CipherSuite TLS_ECDHE_ECCSI_WITH_AES_128_CBC_SHA256 = { 0xC0, 0x80 }

 CipherSuite TLS_ECDHE_ECCSI_WITH_AES_256_CBC_SHA256 = { 0xC0, 0x8A }

6. TLS Client and Server Handshake Behavior

 The handshake between the TLS client and server follows that defined
 in RFC 7250 [RFC7250], but with the support of the new key exchange
 algorithm and cipher suites due to the introducton of ECCSI. The
 high-level message exchange in the below figure shows TLS handshake
 using raw public keys, where the client_certificate_type and
 server_certificate_type extensions added to the client and server
 hello messages (see Section 4 of RFC 7250).

Wang, et al. Expires September 3, 2018 [Page 6]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

 client_hello,
 client_certificate_type,
 server_certificate_type ->

 <- server_hello,
 client_certificate_type,
 server_certificate_type,
 certificate,
 server_key_exchange,
 certificate_request,
 server_hello_done
 certificate,
 client_key_exchange,
 certificate_verify,
 change_cipher_spec,
 finished ->

 <- change_cipher_spec,
 finished

 Application Data <-------> Application Data

 Figure 2: Basic Raw Public Key TLS Exchange

6.1. Client Hello

 If the TLS client wants to use ECCSI, then the
 client_certificate_type is set to be RawPublicKey. If the TLS client
 prefers accepting the server to use ECCSI, then the the
 server_certificate_type is set to be RawPublicKey, and the
 CipherSuite element of the client hello message is set to be the
 cipher suite(s) supporting ECCSI.

6.2. Server Hello

 If the server receives a client hello that contains the
 client_certificate_type extension and/or the server_certificate_type
 extension, then three outcomes are possible [RFC 7250]:

 1. The server does not support the extension defined in this
 document. In this case, the server returns the server hello without
 the extensions defined in this document.

 2. The server supports the extension defined in this document, but
 it does not have any certificate type in common with the client.
 Then, the server terminates the session with a fatal alert of type
 "unsupported_certificate".

Wang, et al. Expires September 3, 2018 [Page 7]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

 3. The server supports the extensions defined in this document and
 has at least one certificate type in common with the client. In this
 case, the processing rules described below are followed.

 The client_certificate_type extension in the client hello indicates
 the certificate types the client is able to provide to the server,
 when requested using a certificate_request message. If the TLS
 server wants to request a certificate from the client (via the
 certificate_request message), it MUST include the
 client_certificate_type extension in the server hello. This
 client_certificate_type extension in the server hello then indicates
 the type of certificates the client is requested to provide in a
 subsequent certificate payload. The value conveyed in the
 client_certificate_type extension MUST be selected from one of the
 values provided in the client_certificate_type extension sent in the
 client hello. The server MUST also include a certificate_request
 payload in the server hello message.

 If the server does not send a certificate_request payload or none of
 the certificates supported by the client match the server-supported
 certificate types, then the client_certificate_type payload in the
 server hello MUST be omitted.

 If the server_certificate_type extension in the client hello is set
 be RawPublicKey and the CipherSuite element of the client hello
 message is set to be the cipher suite(s) supporting ECCSI, and the
 server chooses to use ECCSI, then the TLS server MUST place the
 SubjectPublicKeyInfo structure containing the ECCSI key into the
 Certificate payload. With the server_certificate_type extension in
 the server hello, the TLS server indicates the certificate type
 carried in the Certificate payload.

6.3. Client Authentication

 When the TLS server has specified RawPublicKey as the
 client_certificate_type, and the TLS client sends the
 SubjectPublicKeyInfo structure containing an ECCSI key in the client
 certificate, authentication of the TLS client to the TLS server is
 achieved.

6.4. Server Authentication

 When the TLS server has specified RawPublicKey as the
 server_certificate_type, and sends the SubjectPublicKeyInfo structure
 containing an ECCSI key in the server certificate, authentication of
 the TLS server to the TLS client is achieved.

Wang, et al. Expires September 3, 2018 [Page 8]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

7. Examples

 In the following, examples of handshake exchages using ECCSI under
 RawPublicKey are illustrated.

7.1. TLS Client and Server Use ECCSI

 In this example, both the TLS client and the TLS server use ECCSI,
 and they are restricted in that they can only process ECCSI keys. As
 a result, the TLS client sets the server_certificate_type extension
 to be raw public key while omits the client_certificate_type
 extension; in addition, the TLS client sets the ciphersuites in the
 client hellow messag to be TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA256,
 as shown in (1).

 When the TLS server receives the client hello, it processes the
 message. Since it has an ECCSI key, it indicates in (2) that it
 agreed to use ECCSI and provided an ECCSI key by placing the
 SubjectPublicKeyInfo structure into the Certificate payload back to
 the client (3). The TLS server demands client authentication, and
 therefore includes a certificate_request (4). The
 client_certificate_type payload in (5) indicates that the TLS server
 accepts a raw public key. The TLS client, which has an ECCSI key,
 returns its ECCSI key in the Certificate payload (6) to the server.

Wang, et al. Expires September 3, 2018 [Page 9]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

client_hello,
cipher_suites=(TLS_ECDHE_ECCSI_WITH_AES_256_CBC_SHA256) // (1)
client_certificate_type=(RawPublicKey) // (1)
server_certificate_type=(RawPublicKey) // (1)
 ->
 <- server_hello,
 server_certificate_type=RawPublicKey // (2)
 certificate, // (3)
 client_certificate_type=RawPublicKey // (5)
 certificate_request, // (4)
 server_key_exchange,
 server_hello_done

certificate, // (6)
client_key_exchange,
change_cipher_spec,
finished ->

 <- change_cipher_spec,
 finished

Application Data <-------> Application Data

 Figure 3: Basic Raw Public Key TLS Exchange

7.2. Combined Usage of Raw Public Keys and X.509 Certificates

 This example combines the uses of an ECCSI key and an X.509
 certificate. The TLS client uses an ECCSI key for client
 authentication, and the TLS server provides an X.509 certificate.
 This exchange starts with the client indicating its ability to
 process a raw public key, or an X.509 certificate, if provided by the
 server. It prefers a raw public key, since the RawPublicKey value
 precedes the other value in the server_certificate_type vector.
 Furthermore, the client indicates that it has a raw public key for
 client-side authentication (see (1)). The server chooses to provide
 its X.509 certificate in (3) and indicates that choice in (2). For
 client authentication, the server indicates in (4) that it has
 selected the raw public key format and requests a certificate from
 the client in (5). The TLS client provides an ECSSI key in (6) after
 receiving and processing the TLS server hello message.

Wang, et al. Expires September 3, 2018 [Page 10]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

client_hello,
cipher_suites=(TLS_ECDHE_ECSSI_WITH_AES_256_CBC_SHA256, TLS_ECDHE_ECDSA_WITH
_AES_256_CBC_SHA256) // (1)
server_certificate_type=(RawPublicKey, X.509) // (1)
client_certificate_type=(RawPublicKey) // (1)
 ->
 <- server_hello,
 server_certificate_type=X.509 // (2)
 certificate, // (3)
 client_certificate_type=RawPublicKey // (4)
 certificate_request, // (5)
 server_key_exchange,
 server_hello_done
certificate, // (6)
client_key_exchange,
change_cipher_spec,
finished ->

 <- change_cipher_spec,
 finished

Application Data <-------> Application Data

 Figure 4: Basic Raw Public Key TLS Exchange

8. Security Considerations

 Using IBS-enabled raw public key in TLS/DTLS will not change the
 handshake flows of TLS, so the security of the resulting protocol
 rests on the security of the used IBS algorithms. The example IBS
 algorithms mentioned above are all standardized and open, and thus
 the security of these algorithms is supposed to have gone through
 wide scrutinization.

9. IANA Considerations

 This document describes new OIDs for IBS algorithms (Section 4), new
 key exchange algorithm (Section 5) and the corresponding new cipher
 suites (Section 5).

10. Acknowledgements

11. References

11.1. Normative References

Wang, et al. Expires September 3, 2018 [Page 11]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

 [PKIX] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List(CRL) Profile", June 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5091] Boyen, X. and L. Martin, "Identity-Based Cryptography
 Standard (IBCS) #1: Supersingular Curve Implementations of
 the BF and BB1 Cryptosystems", RFC 5091,
 DOI 10.17487/RFC5091, December 2007,
 <https://www.rfc-editor.org/info/rfc5091>.

 [RFC6507] Groves, M., "Elliptic Curve-Based Certificateless
 Signatures for Identity-Based Encryption (ECCSI)",
 RFC 6507, DOI 10.17487/RFC6507, February 2012,
 <https://www.rfc-editor.org/info/rfc6507>.

 [RFC6508] Groves, M., "Sakai-Kasahara Key Encryption (SAKKE)",
 RFC 6508, DOI 10.17487/RFC6508, February 2012,
 <https://www.rfc-editor.org/info/rfc6508>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

11.2. Informative References

 [Defeating-SSL]
 Marlinspike, M.,, "New Tricks for Defeating SSL in
 Practice", Feb 2009,
 <http://www.blackhat.com/presentations/bh-dc-
 09/Marlinspike/
 BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf>.

Appendix A. Examples

Authors’ Addresses

Wang, et al. Expires September 3, 2018 [Page 12]

Internet-Draft TLS-RAW-Public-Key-IBC March 2018

 Haiguang Wang (editor)
 Huawei Technology Pte. Ltd.
 20 Secience Park Road, #3-30/31
 Singapore 117687
 SG

 Phone: +65 6825 4200
 Email: wang.haiguang1@huawei.com

 Yanjiang Yang
 Huawei Technology Pte. Ltd.
 20 Secience Park Road, #3-30/31
 Singapore 117687
 SG

 Phone: +65 6825 4200
 Email: yang.yanjiang@huawei.com

 Xin Kang
 Huawei Technology Pte. Ltd.
 20 Secience Park Road, #3-30/31
 Singapore 117687
 SG

 Phone: +65 6825 4200
 Email: xin.kang@huawei.com

Wang, et al. Expires September 3, 2018 [Page 13]

