Hi there,

When trying to solve a integral as part of a manual inverse fourier 
transform, SymPy return the unevaluated integral. Does anybody know if 
SymPy is able to solve this integral with some help? It would be good 
enough if I'd be able to obtain the result for specific values of t.

import sympy as sp
phi,t = sp.symbols('phi,t',real=True)
sp.I*(1 - 
sp.exp(4*sp.I*sp.pi*phi))*sp.exp(-8*sp.I*sp.pi*phi)/(2*sp.pi*phi*(-4*sp.pi**2*phi**2
 
+ 1.5*sp.I*sp.pi*phi + 4))
solution_numeric = 1 / sp.pi * 
sp.integrate(sp.re(solution_in_frequency_domain_numeric*sp.exp(sp.I*2*phi*t)),(phi,0,4))
print(solution_numeric)

returns:
(Integral(sin(4*pi*phi)*re(exp(2*I*phi*t)/(-4*pi**2*phi**2*exp(8*I*pi*phi) 
+ 1.5*I*pi*phi*exp(8*I*pi*phi) + 4*exp(8*I*pi*phi))), (phi, 0, 4)) + 
Integral(cos(4*pi*phi)*im(exp(2*I*phi*t)/(-4*pi**2*phi**2*exp(8*I*pi*phi) + 
1.5*I*pi*phi*exp(8*I*pi*phi) + 4*exp(8*I*pi*phi))), (phi, 0, 4)) + 
Integral(-im(exp(2*I*phi*t)/(-4*pi**2*phi**2*exp(8*I*pi*phi) + 
1.5*I*pi*phi*exp(8*I*pi*phi) + 4*exp(8*I*pi*phi))), (phi, 0, 
4)))/(2*pi**2*phi)

Plotting the result for t,0,15 should give this result according to Maple:
[image: Schermafbeelding 2023-02-06 163521.jpg]

Kind regards,
Tom van Woudenberg
Delft University of Technology

-- 
You received this message because you are subscribed to the Google Groups 
"sympy" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sympy+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sympy/eea7eaef-8752-41f8-bf9d-ba78a1782c37n%40googlegroups.com.

Reply via email to