Author: markj
Date: Sun Jul  8 16:26:13 2018
New Revision: 336089
URL: https://svnweb.freebsd.org/changeset/base/336089

Log:
  Fix whitespace issues in bessel function routines.
  
  PR:           229423
  Submitted by: Steve Kargl <s...@troutmask.apl.washington.edu>
  MFC after:    3 days

Modified:
  head/lib/msun/src/e_j0.c
  head/lib/msun/src/e_j1.c
  head/lib/msun/src/e_j1f.c
  head/lib/msun/src/e_jn.c

Modified: head/lib/msun/src/e_j0.c
==============================================================================
--- head/lib/msun/src/e_j0.c    Sun Jul  8 15:48:47 2018        (r336088)
+++ head/lib/msun/src/e_j0.c    Sun Jul  8 16:26:13 2018        (r336089)
@@ -1,4 +1,3 @@
-
 /* @(#)e_j0.c 1.3 95/01/18 */
 /*
  * ====================================================
@@ -6,7 +5,7 @@
  *
  * Developed at SunSoft, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -33,20 +32,20 @@ __FBSDID("$FreeBSD$");
  *        (To avoid cancellation, use
  *             sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  *         to compute the worse one.)
- *        
+ *
  *     3 Special cases
  *             j0(nan)= nan
  *             j0(0) = 1
  *             j0(inf) = 0
- *             
+ *
  * Method -- y0(x):
  *     1. For x<2.
- *        Since 
+ *        Since
  *             y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
  *        therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
  *        We use the following function to approximate y0,
  *             y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
- *        where 
+ *        where
  *             U(z) = u00 + u01*z + ... + u06*z^6
  *             V(z) = 1  + v01*z + ... + v04*z^4
  *        with absolute approximation error bounded by 2**-72.
@@ -71,7 +70,7 @@ huge  = 1e300,
 one    = 1.0,
 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
-               /* R0/S0 on [0, 2.00] */
+/* R0/S0 on [0, 2.00] */
 R02  =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
 R03  = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
 R04  =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
@@ -157,7 +156,7 @@ __ieee754_y0(double x)
         * y0(Inf) = 0.
         * y0(-Inf) = NaN and raise invalid exception.
         */
-       if(ix>=0x7ff00000) return vone/(x+x*x); 
+       if(ix>=0x7ff00000) return vone/(x+x*x);
        /* y0(+-0) = -inf and raise divide-by-zero exception. */
        if((ix|lx)==0) return -one/vzero;
        /* y0(x<0) = NaN and raise invalid exception. */
@@ -293,7 +292,7 @@ pzero(double x)
        s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
        return one+ r/s;
 }
-               
+
 
 /* For x >= 8, the asymptotic expansions of qzero is
  *     -1/8 s + 75/1024 s^3 - ..., where s = 1/x.

Modified: head/lib/msun/src/e_j1.c
==============================================================================
--- head/lib/msun/src/e_j1.c    Sun Jul  8 15:48:47 2018        (r336088)
+++ head/lib/msun/src/e_j1.c    Sun Jul  8 16:26:13 2018        (r336089)
@@ -1,4 +1,3 @@
-
 /* @(#)e_j1.c 1.3 95/01/18 */
 /*
  * ====================================================
@@ -6,7 +5,7 @@
  *
  * Developed at SunSoft, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -34,16 +33,16 @@ __FBSDID("$FreeBSD$");
  *        (To avoid cancellation, use
  *             sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  *         to compute the worse one.)
- *        
+ *
  *     3 Special cases
  *             j1(nan)= nan
  *             j1(0) = 0
  *             j1(inf) = 0
- *             
+ *
  * Method -- y1(x):
- *     1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN 
+ *     1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
  *     2. For x<2.
- *        Since 
+ *        Since
  *             y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
  *        therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
  *        We use the following function to approximate y1,
@@ -154,7 +153,7 @@ __ieee754_y1(double x)
         * y1(Inf) = 0.
         * y1(-Inf) = NaN and raise invalid exception.
         */
-       if(ix>=0x7ff00000) return  vone/(x+x*x); 
+       if(ix>=0x7ff00000) return  vone/(x+x*x);
        /* y1(+-0) = -inf and raise divide-by-zero exception. */
         if((ix|lx)==0) return -one/vzero;
        /* y1(x<0) = NaN and raise invalid exception. */
@@ -186,10 +185,10 @@ __ieee754_y1(double x)
                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
                 }
                 return z;
-        } 
+        }
         if(ix<=0x3c900000) {    /* x < 2**-54 */
             return(-tpi/x);
-        } 
+        }
         z = x*x;
         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
@@ -287,7 +286,7 @@ pone(double x)
         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
         return one+ r/s;
 }
-               
+
 
 /* For x >= 8, the asymptotic expansions of qone is
  *     3/8 s - 105/1024 s^3 - ..., where s = 1/x.

Modified: head/lib/msun/src/e_j1f.c
==============================================================================
--- head/lib/msun/src/e_j1f.c   Sun Jul  8 15:48:47 2018        (r336088)
+++ head/lib/msun/src/e_j1f.c   Sun Jul  8 16:26:13 2018        (r336089)
@@ -32,7 +32,7 @@ huge    = 1e30,
 one    = 1.0,
 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
-       /* R0/S0 on [0,2] */
+/* R0/S0 on [0,2] */
 r00  = -6.2500000000e-02, /* 0xbd800000 */
 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
 r02  = -1.5995563444e-05, /* 0xb7862e36 */

Modified: head/lib/msun/src/e_jn.c
==============================================================================
--- head/lib/msun/src/e_jn.c    Sun Jul  8 15:48:47 2018        (r336088)
+++ head/lib/msun/src/e_jn.c    Sun Jul  8 16:26:13 2018        (r336089)
@@ -1,4 +1,3 @@
-
 /* @(#)e_jn.c 1.4 95/01/18 */
 /*
  * ====================================================
@@ -6,7 +5,7 @@
  *
  * Developed at SunSoft, a Sun Microsystems, Inc. business.
  * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
+ * software is freely granted, provided that this notice
  * is preserved.
  * ====================================================
  */
@@ -18,7 +17,7 @@ __FBSDID("$FreeBSD$");
  * __ieee754_jn(n, x), __ieee754_yn(n, x)
  * floating point Bessel's function of the 1st and 2nd kind
  * of order n
- *          
+ *
  * Special cases:
  *     y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
  *     y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
@@ -37,7 +36,6 @@ __FBSDID("$FreeBSD$");
  *     yn(n,x) is similar in all respects, except
  *     that forward recursion is used for all
  *     values of n>1.
- *     
  */
 
 #include "math.h"
@@ -66,7 +64,7 @@ __ieee754_jn(int n, double x)
        ix = 0x7fffffff&hx;
     /* if J(n,NaN) is NaN */
        if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
-       if(n<0){                
+       if(n<0){
                n = -n;
                x = -x;
                hx ^= 0x80000000;
@@ -77,14 +75,14 @@ __ieee754_jn(int n, double x)
        x = fabs(x);
        if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
            b = zero;
-       else if((double)n<=x) {   
+       else if((double)n<=x) {
                /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
            if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2) 
+    /* (x >> n**2)
      *     Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
      *     Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *     Let s=sin(x), c=cos(x), 
-     *         xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+     *     Let s=sin(x), c=cos(x),
+     *         xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
      *
      *            n    sin(xn)*sqt2    cos(xn)*sqt2
      *         ----------------------------------
@@ -100,7 +98,7 @@ __ieee754_jn(int n, double x)
                    case 3: temp =  cos(x)-sin(x); break;
                }
                b = invsqrtpi*temp/sqrt(x);
-           } else {    
+           } else {
                a = __ieee754_j0(x);
                b = __ieee754_j1(x);
                for(i=1;i<n;i++){
@@ -111,7 +109,7 @@ __ieee754_jn(int n, double x)
            }
        } else {
            if(ix<0x3e100000) { /* x < 2**-29 */
-    /* x is tiny, return the first Taylor expansion of J(n,x) 
+    /* x is tiny, return the first Taylor expansion of J(n,x)
      * J(n,x) = 1/n!*(x/2)^n  - ...
      */
                if(n>33)        /* underflow */
@@ -126,14 +124,14 @@ __ieee754_jn(int n, double x)
                }
            } else {
                /* use backward recurrence */
-               /*                      x      x^2      x^2       
+               /*                      x      x^2      x^2
                 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
                 *                      2n  - 2(n+1) - 2(n+2)
                 *
-                *                      1      1        1       
+                *                      1      1        1
                 *  (for large x)   =  ----  ------   ------   .....
                 *                      2n   2(n+1)   2(n+2)
-                *                      -- - ------ - ------ - 
+                *                      -- - ------ - ------ -
                 *                       x     x         x
                 *
                 * Let w = 2n/x and h=2/x, then the above quotient
@@ -149,9 +147,9 @@ __ieee754_jn(int n, double x)
                 * To determine how many terms needed, let
                 * Q(0) = w, Q(1) = w(w+h) - 1,
                 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
-                * When Q(k) > 1e4      good for single 
-                * When Q(k) > 1e9      good for double 
-                * When Q(k) > 1e17     good for quadruple 
+                * When Q(k) > 1e4      good for single
+                * When Q(k) > 1e9      good for double
+                * When Q(k) > 1e17     good for quadruple
                 */
            /* determine k */
                double t,v;
@@ -237,11 +235,11 @@ __ieee754_yn(int n, double x)
        if(n==1) return(sign*__ieee754_y1(x));
        if(ix==0x7ff00000) return zero;
        if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2) 
+    /* (x >> n**2)
      *     Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
      *     Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *     Let s=sin(x), c=cos(x), 
-     *         xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+     *     Let s=sin(x), c=cos(x),
+     *         xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
      *
      *            n    sin(xn)*sqt2    cos(xn)*sqt2
      *         ----------------------------------
_______________________________________________
svn-src-all@freebsd.org mailing list
https://lists.freebsd.org/mailman/listinfo/svn-src-all
To unsubscribe, send any mail to "svn-src-all-unsubscr...@freebsd.org"

Reply via email to