Setting Up DocSample1 on the Server

Note You need to perform all of the following procedures on a server running Microsoft® Internet Information Services (IIS).

To create the ActiveX DLL

1. Open Microsoft Visual Basic® and create an ActiveX DLL project.

2. Change the Project Name to DocSample1 and the Class Name to Sample1.

3. To the Sample1 class, add the code from the Code Listing for the Sample1 Class.

4. On the File menu, click Make DocSample1.dll and create the DLL.

To create the virtual root

· Using IIS, create a virtual root () and name it DocSample1.

To create the WSDL File

1. In the folder for the DocSample1 virtual root that you previously created, create a file using Notepad and save it as DocSample1.wsdl.

2. To this file, add the code from the Code Listing for the DocSample1.wsdl File.

To create the WSML File

1. In the folder for the DocSample1 virtual root that you previously created, create a file using Notepad and save it as DocSample1.wsml.

2. To this file, add the code from the Code Listing for the DocSample1.wsml File.

3. In the WSML file, change the ProgID to the ProgID of the ActiveX DLL that you previously created.

Setting Up and Running clientDocSample1 on the Client

To create the VBScript Application

5. On the client, create a sample folder.

6. Create a file using Notepad and add the following code to that file:

Option Explicit

Dim soapClient

set soapclient = CreateObject("MSSOAP.SoapClient")

On Error Resume Next

Call soapclient.mssoapinit("http://localhost/DocSample1/DocSample1.wsdl", "DocSample1", "Sample1SoapPort")

if err <> 0 then

 wscript.echo "initialization failed " + err.description

end if

wscript.echo soapclient.EchoString("Bob")

if err <> 0 then

 wscript.echo err.description

 wscript.echo "faultcode=" + soapclient.faultcode

 wscript.echo "faultstring=" + soapclient.faultstring

 wscript.echo "faultactor=" + soapclient.faultactor

 wscript.echo "detail=" + soapclient.detail

end if

wscript.echo soapclient.AddNumbers(2, 3)

if err <> 0 then

 wscript.echo err.description

 wscript.echo "faultcode=" + soapclient.faultcode

 wscript.echo "faultstring=" + soapclient.faultstring

 wscript.echo "faultactor=" + soapclient.faultactor

 wscript.echo "detail=" + soapclient.detail

end if

7. Save the file as clientDocSample1.vbs.

To run clientDocSample1

· Open a command prompt window and enter cscript clientDocSample1.vbs.

Code Listings for DocSample1

This topic provides the server-side code for the application described in Using a High Level API for SOAP Messages topic.

· Code Listing for the Sample1 Class

· Code Listing for the DocSample1.wsdl file

· Code Listing for the DocSample1.wsml file

Code Listing for the Sample1 Class

Public Function EchoString(ByVal testString As String) _

 As String

 EchoString = testString

End Function

Public Function AddNumbers(ByVal NumberOne As Double, _

 ByVal NumberTwo As Double) _

 As Double

 AddNumbers = NumberOne + NumberTwo

End Function

Public Function SubtractNumbers(ByVal NumberOne As Double, _

 ByVal NumberTwo As Double) _

 As Double

 SubtractNumbers = NumberOne - NumberTwo

End Function

Code Listing for the DocSample1.wsdl File

Note You need to change the value of the location attribute of the <soap:address> element. The URL specifies localhost. Change it to the server name as appropriate.

<definitions name ='DocSample1' targetNamespace = 'http://tempuri.org/wsdl/'

 xmlns:wsdlns='http://tempuri.org/wsdl/'

 xmlns:typens='http://tempuri.org/type'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'

 xmlns:stk='http://schemas.microsoft.com/soap-toolkit/wsdl-extension'

 xmlns='http://schemas.xmlsoap.org/wsdl/'>

 <types>

 <schema targetNamespace='http://tempuri.org/type'

 xmlns='http://www.w3.org/2001/XMLSchema'

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'>

 </schema>

 </types>

 <message name='Sample1.EchoString'>

 <part name='testString' type='xsd:string'/>

 </message>

 <message name='Sample1.EchoStringResponse'>

 <part name='Result' type='xsd:string'/>

 </message>

 <message name='Sample1.AddNumbers'>

 <part name='NumberOne' type='xsd:double'/>

 <part name='NumberTwo' type='xsd:double'/>

 </message>

 <message name='Sample1.AddNumbersResponse'>

 <part name='Result' type='xsd:double'/>

 </message>

 <message name='Sample1.SubtractNumbers'>

 <part name='NumberOne' type='xsd:double'/>

 <part name='NumberTwo' type='xsd:double'/>

 </message>

 <message name='Sample1.SubtractNumbersResponse'>

 <part name='Result' type='xsd:double'/>

 </message>

 <portType name='Sample1SoapPort'>

 <operation name='EchoString' parameterOrder='testString'>

 <input message='wsdlns:Sample1.EchoString' />

 <output message='wsdlns:Sample1.EchoStringResponse' />

 </operation>

 <operation name='AddNumbers' parameterOrder='NumberOne NumberTwo'>

 <input message='wsdlns:Sample1.AddNumbers' />

 <output message='wsdlns:Sample1.AddNumbersResponse' />

 </operation>

 <operation name='SubtractNumbers' parameterOrder='NumberOne NumberTwo'>

 <input message='wsdlns:Sample1.SubtractNumbers' />

 <output message='wsdlns:Sample1.SubtractNumbersResponse' />

 </operation>

 </portType>

 <binding name='Sample1SoapBinding' type='wsdlns:Sample1SoapPort' >

 <stk:binding preferredEncoding='UTF-8'/>

 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

 <operation name='EchoString' >

 <soap:operation soapAction='http://tempuri.org/action/Sample1.EchoString' />

 <input>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

 <operation name='AddNumbers' >

 <soap:operation soapAction='http://tempuri.org/action/Sample1.AddNumbers' />

 <input>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

 <operation name='SubtractNumbers' >

 <soap:operation soapAction='http://tempuri.org/action/Sample1.SubtractNumbers' />

 <input>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

 </binding>

 <service name='DocSample1' >

 <port name='Sample1SoapPort' binding='wsdlns:Sample1SoapBinding' >

 <soap:address location='http://localhost/DocSample1/DocSample1.wsdl' />

 </port>

 </service>

</definitions>

Note If you create this WSDL file using the WSDL Generator tool, the first line in the WSDL that is generated will specify the encoding (<?xml version='1.0' encoding='UTF-8' ?>) and the file will be saved accordingly. If you edit the WSDL file that has the encoding specified in the first line, the file must be saved with the same encoding that appears in the first line in the WSDL. To avoid any potential problems, the first line with encoding has been removed in this WSDL. Thus you can save this file with any encoding and the sample application will work.

Code Listing for the DocSample1.wsml File

<servicemapping name='DocSample1'>

 <service name='DocSample1'>

 <using PROGID='DocSample1.Sample1' cachable='0' ID='Sample1Object' />

 <port name='Sample1SoapPort'>

 <operation name='EchoString'>

 <execute uses='Sample1Object' method='EchoString'>

 <parameter callIndex='1' name='testString' elementName='testString' />

 <parameter callIndex='-1' name='retval' elementName='Result' />

 </execute>

 </operation>

 <operation name='AddNumbers'>

 <execute uses='Sample1Object' method='AddNumbers'>

 <parameter callIndex='1' name='NumberOne' elementName='NumberOne' />

 <parameter callIndex='2' name='NumberTwo' elementName='NumberTwo' />

 <parameter callIndex='-1' name='retval' elementName='Result' />

 </execute>

 </operation>

 <operation name='SubtractNumbers'>

 <execute uses='Sample1Object' method='SubtractNumbers'>

 <parameter callIndex='1' name='NumberOne' elementName='NumberOne' />

 <parameter callIndex='2' name='NumberTwo' elementName='NumberTwo' />

 <parameter callIndex='-1' name='retval' elementName='Result' />

 </execute>

 </operation>

</port>

 </service>

</servicemapping>

Understanding Server-Side Development for DocSample1

In this sample application, you first create the DocSample1.dll on the server. This is the DLL that implements the various operations (EchoString, AddNumbers, and SubtractNumbers). If you had created this DLL on a computer other than the server running Internet Information Services (IIS), you would need to copy it from that computer to the server and also register it on the server.

Next, you created a virtual root on the server and added the following files to it:

· DocSample1.wsdl — this Web Services Description Language (WSDL) file describes the TestService1 service and the EchoString, AddNumbers, and SubtractNumbers operations associated with that service. It also defines the format that the client must follow when creating a Simple Object Access Protocol (SOAP) message to request an operation defined in the service. The server in this example is an ISAPI server as specified by the location attribute of <soap:address> child element of the <port> element specified in <service>. The .wsdl extension at the end of the path, makes it a ISAPI listener (.asp extension makes it an ASP listener in which case you need an ASP file on the server).

· DocSample1.wsml — a Web Services Meta Language (WSML) file is specific to Microsoft's implementation of SOAP. In this implementation, the WSML file resides only on the server.

About the DocSample1.wsdl File

In a Web Services Description Language (WSDL) file, there are five primary elements used in defining the network service. These five elements appear in a WSDL file in the following order:

· the <types> element, which defines the various data types used in exchanging messages

· the <message> element, which describes the messages being communicated

· the <portType> element, which identifies a set of operations and the messages involved with each of those operations

· the <binding> element, which both specifies the protocol details for various service operations and describes how to map the abstract content of these messages into a concrete format

· the <service> element, which groups a set of related ports together

<types> Element

The <types> element in a Web Services Description Language (WSDL) file is a container for defining the various data types used in exchanging messages.

Here is the fragment from DocSample1.wsdl containing the <types> element:

<types>

 <schema targetNamespace='http://tempuri.org/type'

 xmlns='http://www.w3.org/2001/XMLSchema'

 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'

 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'>

 </schema>

</types>

In this example, the schema in the <types> element is a simple one and does not define any data types because the <message> elements in the WSDL file define the data types of various message parts exchanged in a Simple Object Access Protocol (SOAP) message.

<message> Element

The <message> element in a Web Services Description Language (WSDL) file describes the logical contents of the messages being communicated.

Each <message> element consists of logical parts described by the <part> child element. In the sample WSDL file, each <part> element has both a name and type attribute that specify respectively the message part name and its data type. If a <message> element contains multiple logical parts, it specifies multiple <part> elements.

For example, consider the following fragment from the DocSample1.wsdl file. This fragment shows the <message> elements for the AddNumbers operation.

…

 <message name='Sample1.AddNumbers'>

 <part name='NumberOne' type='xsd:double'/>

 <part name='NumberTwo' type='xsd:double'/>

 </message>

 <message name='Sample1.AddNumbersResponse'>

 <part name='Result' type='xsd:double'/>

 </message>

…

In this fragment, there are two <message> elements that correspond respectively to the request and response messages for the AddNumbers operation:

· The request message, AddNumbers, is the message sent in the Simple Object Access Protocol (SOAP) body when the client sends a message to the server requesting the AddNumbers operation (the operation name is the wrapper element for the SOAP message). Notice that this message has two <part> elements. Each of these <part> elements identifies one of the two numbers to be added together ('NumberOne' and 'NumberTwo') and specifies that each of these numbers is a double integer.

· The response message, AddNumbersResponse, is the message sent from the server back to the client upon completion of the requested operation (the operation name + "Response" is used as the wrapper element for the message in the SOAP response). This message has only one <part> element and that element represents the return value of the operation (i.e., the sum of the two numbers sent in the request message).

These message definitions are abstract definitions of the contents of various messages. The message bindings describe how to map the abstract content into a concrete format. In the DocSample1 application, the abstract definition of the message is the same as the concrete format. So the bindings, in this case, provide no additional mapping information. But, in other applications, the message definition may require extensive mapping information.

<portType> Element

The <portType> element in a Web Services Description Language (WSDL) file identifies a set of operations and the messages involved with each of the operations.

The following fragment of the DocSample1.wsdl file shows the <portType> element named DocSample1PortType. In this WSDL file, there is only one <portType> element. However, other such files may include multiple <portType> elements, each of which describes a specific set of operations and associated messages.

<portType name='Sample1SoapPort'>

 <operation name='EchoString' parameterOrder='testString'>

 <input message='wsdlns:Sample1.EchoString' />

 <output message='wsdlns:Sample1.EchoStringResponse' />

 </operation>

 <operation name='AddNumbers' parameterOrder='NumberOne NumberTwo'>

 <input message='wsdlns:Sample1.AddNumbers' />

 <output message='wsdlns:Sample1.AddNumbersResponse' />

 </operation>

 <operation name='SubtractNumbers' parameterOrder='NumberOne NumberTwo'>

 <input message='wsdlns:Sample1.SubtractNumbers' />

 <output message='wsdlns:Sample1.SubtractNumbersResponse' />

 </operation>

</portType>

The DocSample1PortType element has three <operation> child elements, each of which describes an operation. The name attribute of the <operation> element identifies the various operations: EchoString, AddNumbers, and SubtractNumbers. All of these operations are request-response operations in which the <input> element specifies the message format for the request and the <output> element specifies the message format for the response.

Each <input> and <output> element has an optional name attribute that identifies that message. In this sample, this name attribute is missing. Therefore, these elements assume default names based upon attaching "Request" and "Response" to the name of the operation. For example, the default names for the <input> and <output> elements of the AddNumbers operation are AddNumbersRequest and AddNumbersResponse, respectively. These names are unique among all <input> and <output> elements within the enclosing <portType>.

<binding> Element

The <binding> element in a Web Services Description Language (WSDL) file does two things:

· Specifies the protocol details for various operations defined in the <portType> element.

· For each operation, describes how to map the abstract content of its messages into a concrete format (i.e., defines how the message looks on the wire).

Each <binding> element has name and type attributes. The name attribute provides a unique name for this binding. The type attribute identifies the port type that it binds. This is the same port type defined earlier in the <portType> element.

This is the fragment from the DocSample1.wsdl file that defines the <binding> element for the AddNumbers operation:

<binding name='Sample1SoapBinding' type='wsdlns:Sample1SoapPort' >

 <stk:binding preferredEncoding='UTF-8'/>

 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

…

 <operation name='AddNumbers' >

 <soap:operation soapAction='http://tempuri.org/action/Sample1.AddNumbers' />

 <input>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

…

</binding>

In the DocSample1.wsdl file, the <binding> element has two child elements: <soap:binding> and <operation>.

<soap:binding> Element

A <soap:binding> element has two attributes:

· The style attribute indicates whether the operation is a remote procedure call (RPC) or a document-oriented operation. If you don't specify the style attribute in the <operation> element, then the default is the value of the style attribute specified in the <soap:binding> element.

· The transport attribute specifies the type of binding to be used.

The following fragment from the DocSample1.wsdl file shows this <soap:binding> element:

<soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http' />

 …

In this sample, the 'rpc' value specified for the style attribute indicates that the operation is an RPC-oriented operation instead of a document-oriented one. For an example of a document style operation, see Using the SMO Framework to Process Documents.

Also, in this sample, the value for the transport attribute specifies that this binding corresponds to the HTTP binding in the Simple Object Access Protocol (SOAP) specification.

<operation> Element

There is one <operation> child element for each operation defined by the <portType> element specified in the type attribute in the <binding> element.

An <operation> element and its child elements correlate with the corresponding elements in the <portType> element. Since the <input> and <output> child elements of the <portType> element don't specify a name attribute, the corresponding child elements in the <binding> element also don't specify a name attribute.

In the previous WSDL fragment, the <operation> element identifies the AddNumbers operation. This element has the <soap: operation>, <input>, and <output> child elements.

<soap:operation> Element

The <soap:operation> child element provides information for the specific operation as a whole. In this element, you use the optional style attribute to identify the type of operation (document-oriented or RPC-oriented) and the soapAction attribute to identify the handler of this operation.

This is a fragment of the DocSample1.wsdl file that defines the <soap:operation> element of the AddNumbers operation:

 …

<operation name='AddNumbers' >

 <soap:operation soapAction='http://tempuri.org/action/Sample1.AddNumbers' />

 …

In this sample, the <soap:operation> element doesn't specify a style attribute. Hence, it uses the value of the style attribute specified in the <soap:binding> element as the default.

<input> and <output> Elements

The <input> and <output> child elements can have two child elements: the <soap:header> and <soap:body> elements. These child elements specify how the message parts of the operation's input and output appear inside the <Header> or <Body> elements of the SOAP <Envelope> element.

In the DocSample1.wsdl file, the <input> and <output> elements specify only the <soap:body> element. This indicates that all the message parts of the input and output are to appear inside the SOAP body (inside the SOAP <Envelope> element).

 …

 <operation name='AddNumbers' >

…

 <input>

 <soap:body use='encoded'

 namespace='http://localhost/DocSample1/DocSample1.xsd'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded'

 namespace='http://localhost/DocSample1/DocSample1.xsd'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

 <operation name='AddNumbers' >

 …

 <input>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </input>

 <output>

 <soap:body use='encoded' namespace='http://tempuri.org/message/'

 encodingStyle='http://schemas.xmlsoap.org/soap/encoding/' />

 </output>

 </operation>

<soap:body> Element

For each of the input and output messages, the <soap:body> element describes how the various message parts appear inside the SOAP <Body> element.

In general, a <soap:body> element has four attributes:

· The parts attribute identifies which part of the message is to appear in the <soap:body>.

· The use attribute indicates whether to encode parts of the message. If the parts are encoded (use="encoded"), then each part references an abstract data type set by the type attribute in the <part> child element of the <message> element. These abstract types produce a concrete message by applying encoding specified in the encodingStyle attribute.

· The encodingStyle attribute specifies the type of encoding to perform on the various parts of the message.

· The namespace attribute provides namespace for the wrapper element that wraps the parameters in case of an RPC style operation. If the operation style is RPC, each part is a parameter or a return value and appears inside a wrapper element within the SOAP <Body> element. The wrapper element is named identically to the operation name and its namespace is the value of the namespace attribute.

In the DocSample1.wsdl file, the style attribute of the <soap:binding> element is "rpc". This indicates that each part in the message appears within an RPC wrapper element in the body.

<service> Element

The <service> element in a Web Services Description Language (WSDL) file identifies a service (a group of related ports). Depending on the number of ports defined in the WSDL file and their association to each other, a WSDL file may define one or more <service> elements.

Each <service> element identifies which ports to group together by using the <port> child elements to identify each port. The <port> child element has two attributes and one child element:

· The name attribute provides a unique name among all ports defined in the WSDL document.

· The binding attribute refers to the binding specified earlier in the WSDL file.

· The <soap:address> element provides the address of the server-side Simple Object Access Protocol (SOAP) request handler.

In the DocSample1.wsdl file, there is only one <portType> element and one <binding> element. Hence, there is only one <service> element. The following fragment shows this <service> element:

<service name='DocSample1' >

 <port name='Sample1SoapPort' binding='wsdlns:Sample1SoapBinding' >

 <soap:address location='http://localhost/DocSample1/DocSample1.asp' />

 </port>

</service>

When a client sends a SOAP request to the server requesting an operation, it must identify the service, a port in the service and the operation it wants executed along with the input parameter values. The request handler then processes the client request and sends a SOAP response back to the client.

About the DocSample1.wsml File

The Web Services Meta Language (WSML) is specific to SOAP Toolkit 2.0 implementation. This file provides mapping information to map an operation in a service described in a Web Services Description Language (WSDL) file to a specific method in the COM object.

Wrapping the contents of the WSML file is the <servicemapping> element. This element has three child elements: <service>, <types> and <operation>.

<servicemapping> element

The <servicemapping> element identifies the <service> element for which mapping is being specified. This is the <service> element you created in the WSDL file.

The following fragment from the DocSample1.wsml file shows the beginning of the <service> element. Notice that the <service> element has the <using> child element that identifies the COM object.

<servicemapping name='DocSample1'>

 <service name='DocSample1'>

 <using PROGID='DocSample1.Sample1'

 cachable='0'

 ID='Sample1Object' />

…

Also notice that the PROGID attribute identifies the COM class which implements all the various methods. The Boolean cachable attribute specifies whether the class instance (the object) stays in memory as long as the soapServer object is in memory. The value of "0" for the cachable attribute indicates the object instance is not cached. If the COM object is apartment or single-threaded, this flag is ignored. The value specified for the ID attribute refers to the COM object. This is the ID that refers to the COM object.

<port> element

The <port> element specifies the <portType> element as defined in the WSDL file. For each operation in a given <portType> element, there is one <operation> element in the WSML file.

The name attribute of the <operation> element identifies the operation. In the following fragment from the DocSample1.wsml file, this attribute identifies the AddNumbers operation.

<port name='Sample1SoapPort'>

…

 <operation name='AddNumbers'>

 <execute uses='Sample1Object'

 method='AddNumbers'

 dispID='1610809345'>

 <parameter callIndex='1'

 name='NumberOne'

 elementName='NumberOne' />

 <parameter callIndex='2'

 name='NumberTwo'

 elementName='NumberTwo' />

 <parameter callIndex='-1'

 name='retval'

 elementName='Result' />

 </execute>

 </operation>

…

</port>

<execute> element

The <execute> child element specifies the object that executes the specified operation. This element has three attributes:

· the uses attribute identifies the object name

· the method attribute identifies the method name

· the optional dispID attribute provides the dispatch ID of the method. While this attribute is optional, including it improves performance since there is no need to search for the dispatch ID

<parameter> element

The <parameter> child element of the <execute> element describes any method parameters. This child element has three attributes:

· the callIndex attribute provides the parameter number (first parameter is "1", second parameter is "2", and so on). A callIndex value of "-1" identifies the parameter as the return parameter

· the name attribute provides a unique name for the parameter (primarily used for documentation purposes)

· the elementName attribute provides the name of the element in the <types> section of the WSDL that holds the value of the parameter

Understanding Client-Side Development for DocSample1

The sample Microsoft® Visual Basic® Scripting Edition (VBScript) application, DocSample1.vbs, first creates the SoapClient object. The application then calls the mssoapinit method. The parameters for this method include the Web Services Description Language (WSDL) file, the server name, and the port name (as identified in the service). In this sample application, there is only one service and one port listed in the service.

The initialization binds the methods in the specified port to the SoapClient object. This allows you to call the methods using this object.

The subsequent calls to AddNumbers and so on are then sent to the server as a Simple Object Access Protocol (SOAP) message and the return value from each call appears on the screen.

