Oh that's easy ... just add this to the above statement for each duplicate
column -
.drop(rightDF.col("x")).drop(rightDF.col("y")).
thanks!
--
View this message in context:
http://apache-spark-user-list.1001560.n3.nabble.com/Left-Right-Outer-join-on-multiple-Columns-tp26293p26328.html
Sen
did you try this -
DataFrame joinedDf_intersect =
leftDf.select("x", "y", "z")
.join(rightDf,leftDf.col("x").equalTo(rightDf.col("x"))
.and(leftDf.col("y").equalTo(rightDf.col("y"))), "left_outer") ;
Hope that helps.
On Mon, Feb 22, 2016 at 12:22 PM, praneshvyas [via Apache Spark User List] <
m