You can try something like this,
val kvRdd = sc.textFile("rawdata/").map( m => {
val
pfUser = m.split("t",2)
(pfUser(0) -> pfUser(1))})
Any inputs to reduce the time duration for mapPartitions at Exchange.scala:44
from 13 s?
--
View this message in context:
http://apache-spark-user-list.1001560.n3.nabble.com/SQLContext-and-HiveContext-Query-Performance-tp6948p7075.html
Sent from the Apache Spark User List mailing list archive a
I timed the third line and here are stage timings,
collect at SparkPlan.scala:52- 0.5 s
mapPartitions at Exchange.scala:58 - 0.7 s
RangePartitioner at Exchange.Scala:62 - 0.7 s
RangePartitioner at Exchange.Scala:62 - 0.5 s
m
--
View this message in context:
http://apache-spark-user-list.1001560.n3.nabble.com/SQLContext-and-HiveContext-Query-Performance-tp6948p6976.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.