Le samedi 24 février 2024 à 18:11:25 UTC+1, Gareth Ma a écrit :
Note that you can wrap it in `Decimal` or `Fraction`, which are both
builtin Python libraries.
I stand corrected. Python ints are bignums, *not* 32-bits integers. and
fractions.Fractions are rationals. Ordinary integer arithmetic
Note that you can wrap it in `Decimal` or `Fraction`, which are both
builtin Python libraries.
On Saturday 24 February 2024 at 13:54:51 UTC Emmanuel Charpentier wrote:
> Le vendredi 23 février 2024 à 23:23:20 UTC+1, Dima Pasechnik a écrit :
>
> [ Snip…]
>
> the normal Python way, without any sym
Le vendredi 23 février 2024 à 23:23:20 UTC+1, Dima Pasechnik a écrit :
[ Snip…]
the normal Python way, without any symbolic sum, would be like this:
sage: sage: g(n,k,r)=(-1)^(k)*binomial(n,k)*(n-k)^r/n^r
: sage: def f(n,r): return math.fsum([1.0*g(n,k,r) for k in range(n+1)])
: sage:
On Friday, February 23, 2024 at 10:16:37 PM UTC dim...@gmail.com wrote:
On Fri, Feb 23, 2024 at 05:00:42PM -0500, Fernando Gouvea wrote:
> In an introductory probability class, one computes the probability of
> getting all of n possible coupons in r individual purchases. The naive
> approach
On Fri, Feb 23, 2024 at 05:00:42PM -0500, Fernando Gouvea wrote:
> In an introductory probability class, one computes the probability of
> getting all of n possible coupons in r individual purchases. The naive
> approach with inclusion-exclusion leads to the awful formula
>
> f(n,r) = \sum_{k=0}