On 2011-02-28 18:28, dmharvey wrote:
> On Feb 27, 5:29 pm, Martin Albrecht
> wrote:
>
>> sage: R. = PolynomialRing(QQ)
>> sage: f = x0^2*x1 + x1^2*x2 + x2^2*x3 + x3^2*x0
>> sage: (f0, f1, f2, f3) = [f.derivative(v) for v in [x0, x1, x2, x3]]
>> sage: I = R.ideal(f0, f1, f2, f3)
>> sage: h = x0^5
On Monday 28 February 2011, dmharvey wrote:
> On Feb 27, 5:29 pm, Martin Albrecht
>
> wrote:
> > sage: R. = PolynomialRing(QQ)
> > sage: f = x0^2*x1 + x1^2*x2 + x2^2*x3 + x3^2*x0
> > sage: (f0, f1, f2, f3) = [f.derivative(v) for v in [x0, x1, x2, x3]]
> > sage: I = R.ideal(f0, f1, f2, f3)
> > sag
On Feb 27, 5:29 pm, Martin Albrecht
wrote:
> sage: R. = PolynomialRing(QQ)
> sage: f = x0^2*x1 + x1^2*x2 + x2^2*x3 + x3^2*x0
> sage: (f0, f1, f2, f3) = [f.derivative(v) for v in [x0, x1, x2, x3]]
> sage: I = R.ideal(f0, f1, f2, f3)
> sage: h = x0^5
> sage: h.lift(I)
> [-x0^2*x2 - 4/15*x0*x1*x3,