Re: [sage-support] Re: multivariate polynomial division

2012-01-12 Thread Jeroen Demeyer
On 2011-02-28 18:28, dmharvey wrote: > On Feb 27, 5:29 pm, Martin Albrecht > wrote: > >> sage: R. = PolynomialRing(QQ) >> sage: f = x0^2*x1 + x1^2*x2 + x2^2*x3 + x3^2*x0 >> sage: (f0, f1, f2, f3) = [f.derivative(v) for v in [x0, x1, x2, x3]] >> sage: I = R.ideal(f0, f1, f2, f3) >> sage: h = x0^5

Re: [sage-support] Re: multivariate polynomial division

2011-02-28 Thread Martin Albrecht
On Monday 28 February 2011, dmharvey wrote: > On Feb 27, 5:29 pm, Martin Albrecht > > wrote: > > sage: R. = PolynomialRing(QQ) > > sage: f = x0^2*x1 + x1^2*x2 + x2^2*x3 + x3^2*x0 > > sage: (f0, f1, f2, f3) = [f.derivative(v) for v in [x0, x1, x2, x3]] > > sage: I = R.ideal(f0, f1, f2, f3) > > sag

[sage-support] Re: multivariate polynomial division

2011-02-28 Thread dmharvey
On Feb 27, 5:29 pm, Martin Albrecht wrote: > sage: R. = PolynomialRing(QQ) > sage: f = x0^2*x1 + x1^2*x2 + x2^2*x3 + x3^2*x0 > sage: (f0, f1, f2, f3) = [f.derivative(v) for v in [x0, x1, x2, x3]] > sage: I = R.ideal(f0, f1, f2, f3) > sage: h = x0^5 > sage: h.lift(I) > [-x0^2*x2 - 4/15*x0*x1*x3,