What's wrong with :
sage: prod([(x-t[0])^t[1] for t in (x^2-26*x-9).roots(x)])
(x + sqrt(178) - 13)*(x - sqrt(178) - 13)
which stays in SR ?
HTH,
--
Emmanuel Charpentier
Le mercredi 3 juin 2015 04:33:48 UTC+2, Simon King a écrit :
>
> Hi Georg,
>
> On 2015-06-02, ggrafendorfer >
> wrote:
> >
Thanks a lot, Simon!
Georg
On Wednesday, June 3, 2015 at 4:33:48 AM UTC+2, Simon King wrote:
>
> Hi Georg,
>
> On 2015-06-02, ggrafendorfer >
> wrote:
> > sage: g(x) = x^2 - 26*x -9
> > sage: g.factor()
> > x^2 - 26*x - 9
>
> First of all, what you create is a symbolic function, so, facto
Hi Georg,
On 2015-06-02, ggrafendorfer wrote:
> sage: g(x) = x^2 - 26*x -9
> sage: g.factor()
> x^2 - 26*x - 9
First of all, what you create is a symbolic function, so, factorisation
doesn't really make sense.
sage: g(x) = x^2-26*x-9
sage: g
x |--> x^2 - 26*x - 9
What you probably want t