[sage-support] Re: factorize quadratic functions

2015-06-05 Thread Emmanuel Charpentier
What's wrong with : sage: prod([(x-t[0])^t[1] for t in (x^2-26*x-9).roots(x)]) (x + sqrt(178) - 13)*(x - sqrt(178) - 13) which stays in SR ? HTH, -- Emmanuel Charpentier Le mercredi 3 juin 2015 04:33:48 UTC+2, Simon King a écrit : > > Hi Georg, > > On 2015-06-02, ggrafendorfer > > wrote: > >

[sage-support] Re: factorize quadratic functions

2015-06-02 Thread georg
Thanks a lot, Simon! Georg On Wednesday, June 3, 2015 at 4:33:48 AM UTC+2, Simon King wrote: > > Hi Georg, > > On 2015-06-02, ggrafendorfer > > wrote: > > sage: g(x) = x^2 - 26*x -9 > > sage: g.factor() > > x^2 - 26*x - 9 > > First of all, what you create is a symbolic function, so, facto

[sage-support] Re: factorize quadratic functions

2015-06-02 Thread Simon King
Hi Georg, On 2015-06-02, ggrafendorfer wrote: > sage: g(x) = x^2 - 26*x -9 > sage: g.factor() > x^2 - 26*x - 9 First of all, what you create is a symbolic function, so, factorisation doesn't really make sense. sage: g(x) = x^2-26*x-9 sage: g x |--> x^2 - 26*x - 9 What you probably want t