On 4 January 2024 12:15:07 WET, Emmanuel Charpentier
wrote:
>
>
>Indeed :
>(%i29) domain:complex; (%o29) complex (%i30) Sol1C:solve(Sys1, Unks);
>(%o30) [[x = 8,y = -40/3,l = (2*25^(1/3))/(3*9^(1/3))]] (%i31)
>Sol2C:solve(Sys2, Unks); (%o31) [] (%i32) map(lambda([w], map(lambda([v],
>subst(
On Thu, 4 Jan 2024 at 12:15, Emmanuel Charpentier
wrote:
>
> But this does not explain whiy Sage is uneble o check (numericalmlmy or
> otherwise) the solutions given by Sympy or Mathematica, which check in Sympy
> (I didn’t yet try to check them in Mathematica, the limitations of the
> current
Indeed :
(%i29) domain:complex; (%o29) complex (%i30) Sol1C:solve(Sys1, Unks);
(%o30) [[x = 8,y = -40/3,l = (2*25^(1/3))/(3*9^(1/3))]] (%i31)
Sol2C:solve(Sys2, Unks); (%o31) [] (%i32) map(lambda([w], map(lambda([v],
subst(w, v)), map(lambda([u], ratsimp(lhs(u)-rhs(u))), Sys1))), Sol1C);
(%o32
You can get the same errors from pure Maxima if you set domain to "complex",
no?
On Thursday, January 4, 2024 at 10:29:56 AM UTC Emmanuel Charpentier wrote:
> The problem seems Sage-specific : the same systems solve correctly (up to
> numerical noise) in “pure” Maxima :
> ;;; Loading #P"/usr/li
The problem seems Sage-specific : the same systems solve correctly (up to
numerical noise) in “pure” Maxima :
;;; Loading #P"/usr/lib/x86_64-linux-gnu/ecl-21.2.1/sb-bsd-sockets.fas" ;;;
Loading #P"/usr/lib/x86_64-linux-gnu/ecl-21.2.1/sockets.fas" Maxima 5.46.0
https://maxima.sourceforge.io usi