Re: [sage-support] Re: Convolution Polynomial Ring

2013-08-22 Thread Santanu Sarkar
Thanks. But in this ring, I can not find gcd. N=7 p=3 R2. = PolynomialRing(GF(p)) S. = R2.quotient(b^N - 1) f=x^6-x^4+x^3+x^2-1 g=x^6+x^4-x^2-x print gcd(f,g),xgcd(f,g) Traceback (click to the left of this block for traceback) ... TypeError: unable to find gcd On 23 August 2013 03:10, Ste

[sage-support] Re: Convolution Polynomial Ring

2013-08-22 Thread Stefan van Zwam
On Thursday, August 22, 2013 4:06:22 PM UTC-4, Santanu wrote: > How to define polynomial ring like Z[x]/(x^10-1) & Z_5[x]/(x^10-1) in > Sage? > > sage: R1. = PolynomialRing(ZZ) sage: R. = R1.quotient(a^10 - 1) sage: R2. = PolynomialRing(GF(5)) sage: S. = R2.quotient(b^10 - 1) Now you can do:

[sage-support] Re: Convolution Polynomial Ring

2013-08-22 Thread Santanu Sarkar
How to define polynomial ring like Z[x]/(x^10-1) & Z_5[x]/(x^10-1) in Sage? On 22 August 2013 12:37, Santanu Sarkar wrote: > Dear all, > Is convolution polynomial ring implemented in Sage? > I want to implement NTRU public key cryptosystem. Hence I need > modular inverse of a polynomial also