R. = GF(2)[]
f = x^5+x^2+1
fx = ntl.GF2X(f)
gives error:
Traceback (most recent call last):fx
File "ntl_GF2X.pyx", line 141, in
sage.libs.ntl.ntl_GF2X.ntl_GF2X.__init__
AttributeError: 'sage.rings.polynomial.polynomial_modn_dense_ntl.Po'
object has no attribute '_Polynomial_dense_mod_n_
(sage 2.10 on X86 linux.)
Suppose you define the ring of polynomials over GF(2):
R. = GF(2)[]
Then a simple polynomial like
f = x^32000
takes time quadratic in the degree to construct.
Meanwhile, the left shift operator will construct the polynomial
almost instantly:
f = x << (32000 - 1)
Al