[sage-support] Re: Polynomial over GF(16)

2012-05-08 Thread ArturZ
))+(b*c).nth_root(2) W dniu wtorek, 8 maja 2012 20:34:31 UTC+2 użytkownik ArturZ napisał: > > Hi, > > I've one problem in the following task. > My calculations: > > I'm defining following function: > > >def custom_divide(x,y): > if x==0: >

[sage-support] Re: Polynomial over GF(16)

2012-05-08 Thread ArturZ
^2+a+1 y=a^3+a^2+1T=... x=a^3+a^2+a+1 y=a^3+a^2+aT=... x=a^3+a^2+a+1 y=a^3+a^2+a+1 T=... I've to define this function T with this constant c (for example c=a^2+a). W dniu wtorek, 8 maja 2012 20:34:31 UTC+2 użytkownik ArturZ napisał: > > Hi, > > I've one pr

[sage-support] Polynomial over GF(16)

2012-05-08 Thread ArturZ
Hi, I've one problem in the following task. My calculations: I'm defining following function: def custom_divide(x,y): if x==0: return 0 return y/x Next, I'm calculating all possible values over *GF(16)* for the function *T* : F.=GF(16) for a,b in F^2: pr

[sage-support] Re: Trace function over GF(8)

2012-04-10 Thread ArturZ
ing able to > solve your own problems in sage (there is no use typing in stuff as > litterally told to you by others without understanding). > > > > Le mardi 10 avril 2012 13:40:47 UTC+2, ArturZ a écrit : >> >> Hi, >> >> I've following problem: >> >

[sage-support] Trace function over GF(8)

2012-04-10 Thread ArturZ
Hi, I've following problem: I want to define the function: f(x,y)=Tr(x*g(y/x)), where Tr(x)=x+x^2+x^4 (Tr:GF(8)-->GF(2)) and x*g(y/x)=[(y*[d^2*[(y/x)^3+1]+d^2*(1+d+d^2)*[(y/x)^2+(y/x)]])/((y/x)^4+d^2*(y/x)^2+1)]+(y/x)^(1/2) I've got the following one (after substitution): f(x,y)=[[(y*[d^2*[(y