))+(b*c).nth_root(2)
W dniu wtorek, 8 maja 2012 20:34:31 UTC+2 użytkownik ArturZ napisał:
>
> Hi,
>
> I've one problem in the following task.
> My calculations:
>
> I'm defining following function:
>
>
>def custom_divide(x,y):
> if x==0:
>
^2+a+1 y=a^3+a^2+1T=...
x=a^3+a^2+a+1 y=a^3+a^2+aT=...
x=a^3+a^2+a+1 y=a^3+a^2+a+1 T=...
I've to define this function T with this constant c (for example c=a^2+a).
W dniu wtorek, 8 maja 2012 20:34:31 UTC+2 użytkownik ArturZ napisał:
>
> Hi,
>
> I've one pr
Hi,
I've one problem in the following task.
My calculations:
I'm defining following function:
def custom_divide(x,y):
if x==0:
return 0
return y/x
Next, I'm calculating all possible values over *GF(16)* for the function *T*
:
F.=GF(16)
for a,b in F^2:
pr
ing able to
> solve your own problems in sage (there is no use typing in stuff as
> litterally told to you by others without understanding).
>
>
>
> Le mardi 10 avril 2012 13:40:47 UTC+2, ArturZ a écrit :
>>
>> Hi,
>>
>> I've following problem:
>>
>
Hi,
I've following problem:
I want to define the function:
f(x,y)=Tr(x*g(y/x)), where Tr(x)=x+x^2+x^4 (Tr:GF(8)-->GF(2)) and
x*g(y/x)=[(y*[d^2*[(y/x)^3+1]+d^2*(1+d+d^2)*[(y/x)^2+(y/x)]])/((y/x)^4+d^2*(y/x)^2+1)]+(y/x)^(1/2)
I've got the following one (after substitution):
f(x,y)=[[(y*[d^2*[(y