The damn thing *can* be done in Sage … by using Sympy :
# Use of Sympy import sympy sx, sy = sympy.symbols("sx, sy") SL =
[sympy.sin, sympy.cos, sympy.tan, sympy.csc, sympy.sec, sympy.cot,
sympy.sinh, sympy.cosh, sympy.tanh, sympy.csch, sympy.sech, sympy.coth] SIL
= [sympy.asin, sympy.acos, sy
On Sat, Jun 1, 2024 at 7:18 PM Matthias Koeppe wrote:
>
> I'll share some additional facts for everyone's convenience.
>
> The total size of these 5 wheel packages to be added in
> https://github.com/sagemath/sage/pull/37301is about 500 kilobytes. (As a
> comparison, that's 10% of the size of ou
Context : finding patterns of explicit forms of inverse
(hyperbolic|trigonometric) functions for simplification.
Simple solution :
reset() y=SR.var("y") IL = [] w0=SR.wild(0) L=[sin, cos, tan, csc, sec,
cot, sinh, cosh, tanh, csch, sech, coth] for f in L:
R=(f(y)==x).solve(y)[0].rhs() for s i