Here is a good discussion of the batman logo over on Math Stack
Exchange:
http://math.stackexchange.com/questions/54506/is-this-batman-equation-for-real
Dana
On Jul 29, 10:06 pm, Matt Rissler wrote:
> var('x y')
> f1(x,y)=((x/7)^2*sqrt(abs(abs(x)-3)/(abs(x)-3))+(y/3)^2
> *sqrt(abs(y+(3*sqrt(33)
var('x y')
f1(x,y)=((x/7)^2*sqrt(abs(abs(x)-3)/(abs(x)-3))+(y/3)^2
*sqrt(abs(y+(3*sqrt(33))/7)/(y+(3*sqrt(33))/7))-1)
f2(x,y)=(abs(x/2)-((3*sqrt(33)-7)/112)*x^2-3+sqrt(1-
(abs(abs(x)-2)-1)^2)- y)
f3(x,y)=(9*sqrt(abs((abs(x)-1)*(abs(x)-3/4))/((1-
abs(x))*(abs(x)-3/4)))-8*abs(x)-y)
f4(x,y)=(3*abs(x)+
Cute. ;-)
What happens if you try building it up one factor at a time?
On Jul 29, 11:36 am, "D.C. Ernst" wrote:
> A student of mine just sent me the following batman logo:
>
> http://i.imgur.com/CNy9J.jpg
--
You received this message because you are subscribed to the Google Groups
"sage-edu"