[sage-devel] Re: Sage 2.10.2.alpha0 released!

2008-02-18 Thread Jaap Spies
Craig Citro wrote: > Hi Jaap, > > I went ahead and fixed (I hope!) the doctest below. (I just added a > prec flag, and made the doctests use it, so this should avoid any sort > of architecture-dependent issues). Could you try this out and let me > know if it works, and then give the patch a posit

[sage-devel] Fwd: [Om] OpenMath @ SCIEnce

2008-02-18 Thread David Joyner
FYI -- Forwarded message -- From: Peter Horn <[EMAIL PROTECTED]> Date: Feb 17, 2008 2:37 PM Subject: [Om] OpenMath @ SCIEnce To: [EMAIL PROTECTED] Hello to the OpenMath Community! The SCIEnce project (Symbolic Computation Infrastructure for Europe, http://www.symbolic-computat

[sage-devel] Re: Sage 2.10.2.alpha0 released!

2008-02-18 Thread Jaap Spies
Craig Citro wrote: As follow up: > > If anyone else is seeing this doctest failure, could you also try it > out? (I don't see it on my machine, so I'm guessing this works, but I > can't be sure.) > > Patch is here: > > http://trac.sagemath.org/sage_trac/ticket/2201 > I applied the patch by ha

[sage-devel] Re: mpoly factoring woes

2008-02-18 Thread Bill Hart
Hi Joel, Well done on annihilating singular on the horror example you had. I've sat down to read the code a few times, but it is slow going for me, as I don't speak python well yet. But I'll make a few comments when I do get some spare moments to finish reading your code. That'll probably be tomo

[sage-devel] Re: Fwd: [Om] OpenMath @ SCIEnce

2008-02-18 Thread mabshoff
On Feb 18, 1:34 pm, "David Joyner" <[EMAIL PROTECTED]> wrote: > FYI Hehe, this email does explain a couple things I did hear at SD7. All I can say is good luck, if you wonder why have a look at the open math discussion list. Cheers, Michael > -- Forwarded message -- > From: P

[sage-devel] Re: mpoly factoring woes

2008-02-18 Thread Roman Pearce
On Feb 18, 6:21 am, Bill Hart <[EMAIL PROTECTED]> wrote: > Laurent Bernardin and Michael B. Monagan. > Efficient Multivariate Factorization Over Finite Fields. If Sage has or can get fast LLL you should implement the new algorithm of Mark van Hoeij. --~--~-~--~~~---~-

[sage-devel] Fwd: Bug#741: Fwd: bug in PARI's mathnf function

2008-02-18 Thread William Stein
Hi, This is about a bug I found in PARI's Hermite Normal Form when testing my new Hermite Normal Form, and a fix from them. William -- Forwarded message -- From: Karim Belabas <[EMAIL PROTECTED]> Date: Feb 18, 2008 2:49 AM Subject: Re: Bug#741: Fwd: bug in PARI's mathnf function

[sage-devel] Re: mpoly factoring woes

2008-02-18 Thread William Stein
On Feb 18, 2008 10:08 AM, Roman Pearce <[EMAIL PROTECTED]> wrote: > > On Feb 18, 6:21 am, Bill Hart <[EMAIL PROTECTED]> wrote: > > Laurent Bernardin and Michael B. Monagan. > > Efficient Multivariate Factorization Over Finite Fields. > > If Sage has or can get fast LLL you should implement the new

[sage-devel] Re: mpoly factoring woes

2008-02-18 Thread Nils Bruin
Mark uses LLL to solve the knapsack problem that arises from solving how the local factors should be bundled together to reconstruct the global factors. It's only used to tame the combinatorial explosion that you get if there are many local factors, but only very few global ones. This is completel

[sage-devel] Re: mpoly factoring woes

2008-02-18 Thread Roman Pearce
> However, I don't know of any new (or old) algorithm by Mark van Hoeij > that addresses the problem of "Efficient Multivariate Factorization Over > Finite Fields" using LLL. Could you please clarify. > I am aware of Mark's algorithms for univariate polynomial factorization > over global fields u

[sage-devel] factor_list in SR returning different types for integer powers

2008-02-18 Thread Jason Grout
In #2028, the following issue is brought up: sage: a=x^1 sage: a.factor_list() [(x, 1)] sage: type(a.factor_list()[0][1]) sage: a=x^2 sage: a.factor_list() [(x, 2)] sage: type(a.factor_list()[0][1]) Basically, the factoring routine differentiates between a power of 1 and any other power and r

[sage-devel] Re: mpoly factoring woes

2008-02-18 Thread Bill Hart
Apparently van Hoeij's approach works (very well) for bivariate polynomials over ZZ. The Magma documentation doesn't seem to give any clue as to whether they use a van Hoeij like approach for finite fields. I at least cannot see how such a thing would work. I did sit down and browse the paper I l

[sage-devel] Is there a way to bind the notebook to a specific IP?

2008-02-18 Thread philt
Hello, Is there a way to bind the notebook to a specific IP? So when checking with netstat, I'd like to see Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp0 0 1.2.3.4:83000.0.0.0:* LI

[sage-devel] Re: Sage 2.10.2.alpha0 released!

2008-02-18 Thread Justin C. Walker
Hi, all, On Feb 14, 2008, at 22:41 , mabshoff wrote: > here is the first alpha0 for 2.10.2. It has been greatly delayed by > SD7 > and then at least on my end by the cold I brought home from it that > put > me out of commission for two days. The big changes in this release > are > > * Debianiza

[sage-devel] plotting cube root function

2008-02-18 Thread Alex Ghitza
-BEGIN PGP SIGNED MESSAGE- Hash: SHA1 This is really upsetting: sage: plot(lambda x: x^(1/3), -5, 5) - --- Traceback (most recent call last) /home/ghitza/colby/ma311/ in () /opt/sage/local/lib/python