[sage-devel] Re: Riemann-Roch spaces in Magma

2009-03-09 Thread John Cremona
2009/3/9 David Kohel : > > Can I suggest moving this discussion to sage-nt? Done. John > > Cheers, > David > > > > --~--~-~--~~~---~--~~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to sage-devel-un

[sage-devel] Re: Riemann-Roch spaces in Magma

2009-03-09 Thread David Kohel
Can I suggest moving this discussion to sage-nt? Cheers, David --~--~-~--~~~---~--~~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to sage-devel-unsubscr...@googlegroups.com For more options, visit thi

[sage-devel] Re: Riemann-Roch spaces in Magma

2009-03-09 Thread John Cremona
I think that the problem is that Magma uses $1 for more than one distinct variable name. Strange but true! So when you changed them all to x you see funny expressions like 1/x^2*x^2. Probably one of the x's is a y. Here is how to get readable output in Magma: > _:=Parent(Basis(D)[1]); > Basis

[sage-devel] Re: Riemann-Roch spaces in Magma

2009-03-08 Thread Francisco Veach
Using an example from the Sage documentation, I have R. = ProjectiveSpace(GF(2),2) f = x^3*y + y^3*z + x*z^3 C = Curve(f) pts = C.rational_points() (Note: pts = [(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)]) D = C.divisor([ (4, pts[0]), (0,pts[1]), (4, pts[2]) ]) C.riemann_roch_basis(D) Output: [x/y

[sage-devel] Re: Riemann-Roch spaces in Magma

2009-03-08 Thread John Cremona
PS The Magma documentation is all available on line and explains this with examples. Try this: http://magma.maths.usyd.edu.au/magma/htmlhelp/text1288.htm John 2009/3/8 John Cremona : > You do this: > >> P3:=pts[3]; >> P5:=pts[5]; >> P6:=pts[6]; >> D:=Place(P3)+Place(P5)+Place(P6); >> D; > Divis

[sage-devel] Re: Riemann-Roch spaces in Magma

2009-03-08 Thread John Cremona
You do this: > P3:=pts[3]; > P5:=pts[5]; > P6:=pts[6]; > D:=Place(P3)+Place(P5)+Place(P6); > D; Divisor 1*Place at (1 : 2 : 1) + 1*Place at (0 : 4 : 1) + 1*Place at (4 : 1 : 0) > RiemannRochSpace(D); KModule of dimension 1 over GF(5) Mapping from: KModule of dimension 1 over GF(5) to Function Fie