Re: [sage-devel] Re: [feature] simplify manual integral usage

2022-06-15 Thread Mom Mam
so should i open a feature request? вт, 14 июн. 2022 г. в 20:27, Mom Mam : > Check out: > import sage.numerical.gauss_legendre > > looks interesting but i cant find where to put the limits > -- > > The numerical_integral routine you’re referr

Re: [sage-devel] Re: [feature] simplify manual integral usage

2022-06-14 Thread Mom Mam
Check out: import sage.numerical.gauss_legendre looks interesting but i cant find where to put the limits -- The numerical_integral routine you’re referring to is mainly just wrapping scipy. It has multiple numerical integration code as well: https://docs.scipy.org/doc

[sage-devel] [feature] simplify manual integral usage

2022-06-13 Thread Mom Mam
hello, i saw that i should post my feature request here, and only then open a ticket. i think it would be nice to simplify the usage of "numerical_integral": 1. instead of using labmda, pass the integration variable to the function just as in the "integral" function instead of this: numerical_i

Re: [sage-devel] Re: integral returns integrate instead of solving

2021-10-25 Thread Mom Mam
thank you for the answer ! its so weird, sometimes it works sometimes doesnt. now i upgraded to sage 9.4, and the last example that i showed perfectly worked: sage: f = -(x - 1)*((x - 1)^2/((x - 1)^2 + 1)^2 + 1/((x - 1)^2 + 1)^2)/sqrt((x - 1)^2 + 1) sage: integrate(f, x) 1/sqrt(x^2 - 2*x + 2) th

Re: [sage-devel] Re: integral returns integrate instead of solving

2021-10-25 Thread Mom Mam
but integrals do work on vectors, it just didnt worked in this particular case. i also face this problem when trying to do integral on each axis, for example: x = var('x') f = -(x - 1)*((x - 1)^2/((x - 1)^2 + 1)^2 + 1/((x - 1)^2 + 1)^2)/sqrt((x - 1)^2 + 1) integrate(f, x) output: -integrate((x -

[sage-devel] integral returns integrate instead of solving

2021-10-25 Thread Mom Mam
hello, im trying to do the next integral on a vector: L_1,L_2 = var('L_1,L_2') f_2 = vector((-(((L_1 - L_2)^2/((L_1 - L_2)^2 + 1) - 1)^2 + (L_1 - L_2)^2/((L_1 - L_2)^2 + 1)^2)*(L_1 - L_2)/((L_1 - L_2)^2 + 1)^(3/2), (((L_1 - L_2)^2/((L_1 - L_2)^2 + 1) - 1)^2 + (L_1 - L_2)^2/((L_1 - L_2)^2 + 1)^2)