[sage-devel] Re: Different results for numerical and symbolic integration

2022-10-25 Thread Emmanuel Charpentier
Forgot : I have graphically checked the numerical quasi-equality of the symbolical integral given by Mathematica and the numerical integral given by Sage. Le mardi 25 octobre 2022 à 15:46:13 UTC+2, Emmanuel Charpentier a écrit : > Essentially correct, bit it’s a tad less simpler : > > sage: f(x

[sage-devel] Re: Different results for numerical and symbolic integration

2022-10-25 Thread Emmanuel Charpentier
Essentially correct, bit it’s a tad less simpler : sage: f(x) = x^2*(log(x))^4/((x+1)*(1+x^2)) sage: list(map(lambda u:u.integrate(x, 0, 1), f(x).partial_fraction_decomposition())) [-5/128*pi^5 + 45/64*zeta(5), 45/4*zeta(5)] sage: list(map(lambda u:mathematica.Integrate(u, (x, 0, 1)).sage(),