example:
> y=(rbind(c(TRUE,TRUE,TRUE),c(FALSE,FALSE,FALSE)))
> y
[,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE
> as.numeric(y)
[1] 1 0 1 0 1 0
I am trying to make some important matrixes become nuemric (1 or 0) but they
change their dimensions.. anyone know how to easily fix
example:
> y=(rbind(c(TRUE,TRUE,TRUE),c(
FALSE,FALSE,FALSE)))
> y
[,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE
> as.numeric(y)
[1] 1 0 1 0 1 0
I am trying to make some important matrixes become nuemric (1 or 0) but they
change their dimensions.. anyone know how to easily fi
Someone can help me? I tried several things and always don't converge
# Model
library(sem)
dados40.cov <- cov(dados40,method="spearman")
model.dados40 <- specify.model()
F1 -> Item11, lam11, NA
F1 -> Item31, lam31, NA
F1 -> Item36, lam36, NA
F1 -> Item54, lam54, NA
F1 -> Item63, lam63, NA
F1
Someone can help me? I tried several things and always don't converge
I am making a confirmatory factor analysis.
# Model
library(sem)
dados40.cov <- cov(dados40,method="spearman")
model.dados40 <- specify.model()
F1 -> Item11, lam11, NA
F1 -> Item31, lam31, NA
F1 -> Item36, lam36, NA
F1 -> I
Someone can help me? I tried several things and always don't converge
I am making a confirmatory factor analysis model.
# Model
library(sem)
dados40.cov <- cov(dados40,method="spearman")
model.dados40 <- specify.model()
F1 -> Item11, lam11, NA
F1 -> Item31, lam31, NA
F1 -> Item36, lam36, NA
F1
I wanted to do a modelling like this, many variables, will simplificate for
understanding
y1 in [a1,b1] => (weight 1) => number 1.1
y2 in [a1,b1] => (weight 1) => number 1.2
y3 in [a1,b1] => (weight 1) => number 1.3
y4 in [a1,b1] => (weight 1) => number 1.4
y5 in [a1,b1] => (weight 2) => number 2
6 matches
Mail list logo