Hi there,
I have this code:
Prepared_Data <- na.omit(read.csv("Prepared_Data.csv", header=TRUE))
pd <- Prepared_Data[,-3] ## data minus response variable
lev <- sapply(pd,function(x) length(unique(x)))
## total parameters for n variables
par(las=1,bty="l")
plot(cumprod(lev),log="y")
library(M
Hi there,
I have this code:
Prepared_Data <- na.omit(read.csv("Prepared_Data.csv", header=TRUE))
pd <- Prepared_Data[,-3] ## data minus response variable
## how many levels per variable?
lev <- sapply(pd,function(x) length(unique(x)))
## total parameters for n variables
par(las=1,bty="l")
plot
Hi there,
I am trying to fit a generalised linear model to some loan application and
default data. The purpose of this is to eventually work out the probability an
applicant will default.
However, R seems to crash or die when I run "glm" on anything greater than a
5-way saturated model for my
3 matches
Mail list logo