|
+-+--+
Why am I getting the wrong predictions?
--
View this message in context:
http://apache-spark-developers-list.1001551.n3.nabble.com/Regularized-Logistic-regression-tp19432p19448.html
Sent from the Apache Spark Developers List mailing list archive at Nabble.com
og_loss(w,x)))
> log_loss=data_predicted_df.map(lambda x:x[1]).mean()
> print log_loss
>
>
>
> --
> View this message in context: http://apache-spark-
> developers-list.1001551.n3.nabble.com/Regularized-Logistic-regr
:(sigmoid_log_loss(w,x)))
log_loss=data_predicted_df.map(lambda x:x[1]).mean()
print log_loss
--
View this message in context:
http://apache-spark-developers-list.1001551.n3.nabble.com/Regularized-Logistic-regression-tp19432p19444.html
Sent from the Apache Spark Developers List mailing list
ext:
http://apache-spark-developers-list.1001551.n3.nabble.com/Regularized-Logistic-regression-tp19432p19443.html
Sent from the Apache Spark Developers List mailing list archive at Nabble.com.
-
To unsubscribe e-mail: dev-unsubscr...@spark.apache.org
...@gmail.com]
Sent: Thursday, October 13, 2016 3:45 PM
To: dev@spark.apache.org
Subject: Regularized Logistic regression
Hello, I am trying to solve a problem using regularized logistic regression
in spark. I am using the model created by LogisticRegression():
lr=LogisticRegression(regParam=10.0,maxIter=10
Hello, I am trying to solve a problem using regularized logistic regression
in spark. I am using the model created by LogisticRegression():
lr=LogisticRegression(regParam=10.0,maxIter=10,standardization=True)
model=lr.fit(data_train_df)
data_predict_with_model=model.transform(data_test_df