I've tried several different GC settings - but still getting timeouts.
Using openJDK 11 with:
-XX:+UseG1GC
-XX:+ParallelRefProcEnabled
-XX:G1RSetUpdatingPauseTimePercent=5
-XX:MaxGCPauseMillis=500
-XX:InitiatingHeapOccupancyPercent=70
-XX:ParallelGCThreads=24
-XX:ConcGCThreads=24
Machine has 40 cores. Xmx is set to 32G.
13 node cluster.
Any ideas on what else to try?
-Joe
On 2/4/2022 10:39 AM, Joe Obernberger wrote:
Still no go. Oddly, I can use trino and do a count OK, but with spark
I get the timeouts. I don't believe tombstones are an issue:
nodetool cfstats doc.doc
Total number of tables: 82
Keyspace : doc
Read Count: 1514288521
Read Latency: 0.5080819034089475 ms
Write Count: 12716563031
Write Latency: 0.1462260620347646 ms
Pending Flushes: 0
Table: doc
SSTable count: 72
Old SSTable count: 0
Space used (live): 74097778114
Space used (total): 74097778114
Space used by snapshots (total): 0
Off heap memory used (total): 287187173
SSTable Compression Ratio: 0.38644718028460934
Number of partitions (estimate): 94111032
Memtable cell count: 175084
Memtable data size: 36945327
Memtable off heap memory used: 0
Memtable switch count: 677
Local read count: 16237350
Local read latency: 0.639 ms
Local write count: 314822497
Local write latency: 0.061 ms
Pending flushes: 0
Percent repaired: 0.0
Bytes repaired: 0.000KiB
Bytes unrepaired: 164.168GiB
Bytes pending repair: 0.000KiB
Bloom filter false positives: 154552
Bloom filter false ratio: 0.01059
Bloom filter space used: 152765592
Bloom filter off heap memory used: 152765016
Index summary off heap memory used: 48349869
Compression metadata off heap memory used: 86072288
Compacted partition minimum bytes: 104
Compacted partition maximum bytes: 943127
Compacted partition mean bytes: 1609
Average live cells per slice (last five minutes):
1108.6270918991
Maximum live cells per slice (last five minutes): 1109
Average tombstones per slice (last five minutes): 1.0
Maximum tombstones per slice (last five minutes): 1
Dropped Mutations: 0
Other things to check?
-Joe
On 2/3/2022 9:30 PM, manish khandelwal wrote:
It maybe the case you have lots of tombstones in this table which is
making reads slow and timeouts during bulk reads.
On Fri, Feb 4, 2022, 03:23 Joe Obernberger
wrote:
So it turns out that number after PT is increments of 60
seconds. I changed the timeout to 96, and now I get PT16M
(96/6). Since I'm still getting timeouts, something else
must be wrong.
Exception in thread "main" org.apache.spark.SparkException: Job
aborted due to stage failure: Task 306 in stage 0.0 failed 4
times, most recent failure: Lost task 306.3 in stage 0.0 (TID
1180) (172.16.100.39 executor 0):
com.datastax.oss.driver.api.core.DriverTimeoutException: Query
timed out after PT16M
at
com.datastax.oss.driver.internal.core.cql.CqlRequestHandler.lambda$scheduleTimeout$1(CqlRequestHandler.java:206)
at
com.datastax.oss.driver.shaded.netty.util.HashedWheelTimer$HashedWheelTimeout.expire(HashedWheelTimer.java:672)
at
com.datastax.oss.driver.shaded.netty.util.HashedWheelTimer$HashedWheelBucket.expireTimeouts(HashedWheelTimer.java:747)
at
com.datastax.oss.driver.shaded.netty.util.HashedWheelTimer$Worker.run(HashedWheelTimer.java:472)
at
com.datastax.oss.driver.shaded.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
at java.base/java.lang.Thread.run(Thread.java:829)
Driver stacktrace:
at
org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2454)
at
org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2403)
at
org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2402)
at
scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at
scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at
scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2402)
at
org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGSchedu