[jira] [Created] (FLINK-8385) Fix exceptions in AbstractEventTimeWindowCheckpointingITCase
Stefan Richter created FLINK-8385: - Summary: Fix exceptions in AbstractEventTimeWindowCheckpointingITCase Key: FLINK-8385 URL: https://issues.apache.org/jira/browse/FLINK-8385 Project: Flink Issue Type: Bug Components: State Backends, Checkpointing Affects Versions: 1.4.0 Reporter: Stefan Richter Assignee: Stefan Richter Fix For: 1.5.0 When running all `AbstractEventTimeWindowCheckpointingITCase` with debug logging, I noticed two types of logged exceptions that should not happen: 1) {code} java.util.concurrent.RejectedExecutionException: Task org.apache.flink.runtime.state.SharedStateRegistry$AsyncDisposalRunnable@49258e6c rejected from java.util.concurrent.ThreadPoolExecutor@47e27938[Terminated, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 24] at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2063) at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:830) at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1379) at org.apache.flink.runtime.state.SharedStateRegistry.scheduleAsyncDelete(SharedStateRegistry.java:197) at org.apache.flink.runtime.state.SharedStateRegistry.unregisterReference(SharedStateRegistry.java:162) at org.apache.flink.runtime.state.IncrementalKeyedStateHandle.discardState(IncrementalKeyedStateHandle.java:180) at org.apache.flink.util.LambdaUtil.applyToAllWhileSuppressingExceptions(LambdaUtil.java:51) at org.apache.flink.runtime.state.StateUtil.bestEffortDiscardAllStateObjects(StateUtil.java:54) at org.apache.flink.runtime.checkpoint.OperatorSubtaskState.discardState(OperatorSubtaskState.java:187) at org.apache.flink.runtime.checkpoint.OperatorState.discardState(OperatorState.java:108) at org.apache.flink.util.LambdaUtil.applyToAllWhileSuppressingExceptions(LambdaUtil.java:51) at org.apache.flink.runtime.state.StateUtil.bestEffortDiscardAllStateObjects(StateUtil.java:54) at org.apache.flink.runtime.checkpoint.CompletedCheckpoint.doDiscard(CompletedCheckpoint.java:229) at org.apache.flink.runtime.checkpoint.CompletedCheckpoint.discardOnShutdown(CompletedCheckpoint.java:198) at org.apache.flink.runtime.checkpoint.ZooKeeperCompletedCheckpointStore$2.apply(ZooKeeperCompletedCheckpointStore.java:351) at org.apache.flink.runtime.zookeeper.ZooKeeperStateHandleStore$RemoveBackgroundCallback.processResult(ZooKeeperStateHandleStore.java:640) at org.apache.curator.framework.imps.Backgrounding$1$1.run(Backgrounding.java:150) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) {code} The cause of this exception is that disposal of an incremental state handle is triggered in another async thread and the shutdown proceeds to close the I/O Executor pool. This leads to RejectedExecutionException once the async deletes are triggered inside the registry. We need to wait for all pending ZK deletes before closing the I/O Executor pool. 2) {code} java.lang.Exception: Could not properly cancel managed keyed state future. at org.apache.flink.streaming.api.operators.OperatorSnapshotResult.cancel(OperatorSnapshotResult.java:91) at org.apache.flink.streaming.runtime.tasks.StreamTask$CheckpointingOperation.executeCheckpointing(StreamTask.java:1090) at org.apache.flink.streaming.runtime.tasks.StreamTask.checkpointState(StreamTask.java:685) at org.apache.flink.streaming.runtime.tasks.StreamTask.performCheckpoint(StreamTask.java:621) at org.apache.flink.streaming.runtime.tasks.StreamTask.triggerCheckpointOnBarrier(StreamTask.java:574) at org.apache.flink.streaming.runtime.io.BarrierBuffer.notifyCheckpoint(BarrierBuffer.java:380) at org.apache.flink.streaming.runtime.io.BarrierBuffer.processBarrier(BarrierBuffer.java:230) at org.apache.flink.streaming.runtime.io.BarrierBuffer.getNextNonBlocked(BarrierBuffer.java:185) at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:225) at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:69)
[jira] [Created] (FLINK-8384) Session Window Assigner with Dynamic Gaps
Dyana Rose created FLINK-8384: - Summary: Session Window Assigner with Dynamic Gaps Key: FLINK-8384 URL: https://issues.apache.org/jira/browse/FLINK-8384 Project: Flink Issue Type: Improvement Components: Streaming Reporter: Dyana Rose Priority: Minor *Reason for Improvement* Currently both Session Window assigners only allow a static inactivity gap. Given the following scenario, this is too restrictive: * Given a stream of IoT events from many device types * Assume each device type could have a different inactivity gap * Assume each device type gap could change while sessions are in flight By allowing dynamic inactivity gaps, the correct gap can be determined in the [assignWindows function|https://github.com/apache/flink/blob/master/flink-streaming-java/src/main/java/org/apache/flink/streaming/api/windowing/assigners/EventTimeSessionWindows.java#L59] by passing the element currently under consideration, the timestamp, and the context to a user defined function. This eliminates the need to create unwieldy work arounds if you only have static gaps. Dynamic Session Window gaps should be available for both Event Time and Processing Time streams. -- This message was sent by Atlassian JIRA (v6.4.14#64029)
Queryable State - Count within Time Window
Hi, I want to find the number of events happened so far in last 5 minutes and make that as a Queryable state. Is it possible? It will be of great help if someone provide some sample code for the same. Thanks, Velu.
[jira] [Created] (FLINK-8386) Scala API cannot create type information for Tuple interface
Timo Walther created FLINK-8386: --- Summary: Scala API cannot create type information for Tuple interface Key: FLINK-8386 URL: https://issues.apache.org/jira/browse/FLINK-8386 Project: Flink Issue Type: Bug Components: Type Serialization System Reporter: Timo Walther Priority: Minor The Scala API type inference does not work with the {{org.apache.flink.api.java.tuple.Tuple}} interface. {code} val ti: TypeInformation[_] = Types.of[Tuple] {code} Leads to: {code} Exception in thread "main" java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to [Lorg.apache.flink.api.common.typeinfo.TypeInformation; at org.apache.flink.table.examples.scala.WordCountTable$.main(WordCountTable.scala:47) at org.apache.flink.table.examples.scala.WordCountTable.main(WordCountTable.scala) {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029)
[jira] [Created] (FLINK-8387) Do not allow filter(false)
Timo Walther created FLINK-8387: --- Summary: Do not allow filter(false) Key: FLINK-8387 URL: https://issues.apache.org/jira/browse/FLINK-8387 Project: Flink Issue Type: Improvement Components: Table API & SQL Reporter: Timo Walther Assignee: Timo Walther Code like the following looks correct but actually produces unintended side effects: {code} left.join(right) .where('a == 'd) .select('a) {code} {{==}} is not converted into an expression but directly evaluated into an boolean expression and implicitly converted into an {{false}} literal. Instead of an exception this leads to an always rejecting table program. We should not allow filters with {{false}} literals. -- This message was sent by Atlassian JIRA (v6.4.14#64029)
aggregate stream of logs
Hi , i have this scenario of applications that streaming logs to kafka . I want to use flink in order to aggregate the stream and calculate some data i have a guid that i can correlate the stream to single event and i have a field that i can use to understand if is the last stream of the event . lets say the stream is something like that , 92e8366c-8ddd-41ed-a297-f9c28bf38792msg1start 92e8366c-8ddd-41ed-a297-f9c28bf38792msg2start 92e8366c-8ddd-41ed-a297-f9c28bf38792msg3end 92e8366c-8ddd-41ed-a297-f9c28bf3666 msg1start I cant use window trigger because then i can lose some data ? the only thing i can think about is onElement trigger ? what is you suggestion for this use case ?
[jira] [Created] (FLINK-8388) Snapshot documentation redirects to 1.4
Chesnay Schepler created FLINK-8388: --- Summary: Snapshot documentation redirects to 1.4 Key: FLINK-8388 URL: https://issues.apache.org/jira/browse/FLINK-8388 Project: Flink Issue Type: Bug Components: Documentation, Project Website Affects Versions: 1.5.0 Reporter: Chesnay Schepler Assignee: Chesnay Schepler Fix For: 1.5.0 The {{baseUrl}} in {{_config.yml}} is still set to 1.4 causing all sections of the snapshot documentation to redirect to the 1.4 docs. -- This message was sent by Atlassian JIRA (v6.4.14#64029)
[jira] [Created] (FLINK-8389) Release all slots upon closing of JobMaster connection
Till Rohrmann created FLINK-8389: Summary: Release all slots upon closing of JobMaster connection Key: FLINK-8389 URL: https://issues.apache.org/jira/browse/FLINK-8389 Project: Flink Issue Type: Improvement Components: Distributed Coordination Affects Versions: 1.5.0 Reporter: Till Rohrmann Assignee: Till Rohrmann Fix For: 1.5.0 The {{TaskExecutor}} should release all slots when the {{JobMaster}} disconnects from it (active disconnect instead of heartbeat timeout initiated). This will make the slots faster available again. -- This message was sent by Atlassian JIRA (v6.4.14#64029)
[jira] [Created] (FLINK-8390) Refactor Hadoop kerberos integration test code
Shuyi Chen created FLINK-8390: - Summary: Refactor Hadoop kerberos integration test code Key: FLINK-8390 URL: https://issues.apache.org/jira/browse/FLINK-8390 Project: Flink Issue Type: Bug Components: Security Affects Versions: 1.5.0 Reporter: Shuyi Chen Assignee: Shuyi Chen As suggested in [Flink-8270| https://issues.apache.org/jira/browse/FLINK-8270] and [Flink-8275|https://issues.apache.org/jira/browse/FLINK-8275|, we want to refactor, possibly remove, the Hadoop-kerberos integration test code from the main code. -- This message was sent by Atlassian JIRA (v6.4.14#64029)