Indeed. That’s probably an oversight :
sage: elliptic_kc(x).limit(x=0) 1/2*pi sage: elliptic_ec(x).limit(x=0) 
limit(elliptic_ec(x), x, 0) 

Curioisly :
sage: elliptic_ec(0) 1/2*pi 

FWIW :
sage: D(r)._mathematica_().Limit(mathematica.Rule(r, 0)) -1/8 

HTH,
​
Le lundi 19 février 2024 à 21:25:51 UTC+1, Mark “Essa King” Sukaiti a 
écrit :

> D(r)=-1/2*((3*r^2 - 1)*elliptic_ec((4*r/(r^2 + 2*r + 1)))^2 + (r^2 - 2*r + 
> 1)*elliptic_ec((4*r/(r^2 + 2*r + 1)))*elliptic_kc((4*r/(r^2 + 2*r + 
> 1))))/(pi^2*r^8 - 2*pi^2*r^7 - pi^2*r^6 + 4*pi^2*r^5 - pi^2*r^4 - 
> 2*pi^2*r^3 + pi^2*r^2)
>
> D(r).limit(r=0)
>
> The limit should be -0.125 (or -1/8) but it seems maxima doesnt know the 
> limit of elliptic_ec(x) for x->0
> [image: 2024-02-20_00-22.png]
> Sympy also fails giving -5/8.
>
> The other algorithms cant evaluate it either.
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/25c243ea-fa2c-489e-93c8-ec9c946d3779n%40googlegroups.com.

Reply via email to