Indeed. That’s probably an oversight : sage: elliptic_kc(x).limit(x=0) 1/2*pi sage: elliptic_ec(x).limit(x=0) limit(elliptic_ec(x), x, 0)
Curioisly : sage: elliptic_ec(0) 1/2*pi FWIW : sage: D(r)._mathematica_().Limit(mathematica.Rule(r, 0)) -1/8 HTH, Le lundi 19 février 2024 à 21:25:51 UTC+1, Mark “Essa King” Sukaiti a écrit : > D(r)=-1/2*((3*r^2 - 1)*elliptic_ec((4*r/(r^2 + 2*r + 1)))^2 + (r^2 - 2*r + > 1)*elliptic_ec((4*r/(r^2 + 2*r + 1)))*elliptic_kc((4*r/(r^2 + 2*r + > 1))))/(pi^2*r^8 - 2*pi^2*r^7 - pi^2*r^6 + 4*pi^2*r^5 - pi^2*r^4 - > 2*pi^2*r^3 + pi^2*r^2) > > D(r).limit(r=0) > > The limit should be -0.125 (or -1/8) but it seems maxima doesnt know the > limit of elliptic_ec(x) for x->0 > [image: 2024-02-20_00-22.png] > Sympy also fails giving -5/8. > > The other algorithms cant evaluate it either. > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/25c243ea-fa2c-489e-93c8-ec9c946d3779n%40googlegroups.com.