On the Sympy list, Cris Smith points out 
<https://groups.google.com/g/sympy/c/EB_Z6h3ZRDg/m/DuAIQkquBAAJ> that 
factoring the orignal equations is enough to allow Sympy’s solve go get a 
correct solution. It turns out that he’s right for Sympy 1.9 (current), but 
not for Sympy 1.8 (current in Sage 9.5.beta7).

Sorry for the noise…
​
Le dimanche 5 décembre 2021 à 20:55:32 UTC+1, Emmanuel Charpentier a écrit :

> ask.sagemat.org question 
> <https://ask.sagemath.org/question/59063/weird-c-values-from-solving-system-of-equations/>
>  
> demonstrating a problem common to all free equation solvers : solve
>
> $$
> \begin{align
>
>
>
>
> *}-a{1}^{3} a{2} + a{1} a{2}^{2} \ -3 \, a{1}^{2} a{2} b{1} + 2 \, a{1} 
> a{2} b{2} + a{2}^{2} b{2} - a{1} b{2} \ -a{1}^{2} a{2}^{2} + a{2}^{3} \ -2 
> \, a{1}^{2} a{2} b{2} - 2 \, a{2}^{2} b{1} + 3 \, a{2}^{2} b{2}\end{align*
> }
> $$
>
> Unk = var('a1 a2 b1 b2')                               
> eq1 = a1 * a2^2 - a2 * a1^3
> eq2 = 2*a1*a2*b2 + b2*a2^2 - 3*a2*a1^2*b1 - a1*b2               
> eq3 = a2^3 - a2^2*a1^2                                                 
> eq4 = 3*a2^2*b2 - 2*a2*a1^2*b2 - 2*a2^2*b1
> Sys = [eq1, eq2, eq3, eq4]
>
> Solving eq1 for a2 :
>
> S1 = eq1.factor().solve(a2, solution_dict=True) ;print ("S1 = ", S1)
>
> S1 =  [{a2: a1^2}, {a2: 0}]
>
> gives us a set of solutions which are *also* solutions of eq3 :
>
> [eq3.subs(s) for s in S1]
>
> [0, 0]
>
> It easy to check that there are no ther roots to eq3:
>
> flatten([eq3.solve(v, algorithm="sympy") for v in eq3.variables()])
>
> [a1 == sqrt(a2), a1 == -sqrt(a2), a2 == 0, a2 == a1^2]
>
> S1[1] turns out to be *also* a solution of eq4:
>
> eq4.subs(S1[1])
>
> 0
>
> As above, we can substitute S1[0] in eq4 and merge the resulting 
> solutions of eq4 to S1[0] suitably updated:
>
> E4=eq4.subs(S1[0])
> S4=flatten([E4.solve(v, solution_dict=True) for v in E4.variables()])
> S134t=S1[1:]for s in S4:
>     S0={u:S1[0][u].subs(s) if "subs" in dir(S1[0][u]) else S1[0][u] for u in 
> S1[0].keys()}
>     S134t+=[S0.copy()|s]
> S134t
>
> [{a2: 0}, {a2: 0, a1: 0}, {a2: a1^2, b1: 1/2*b2}, {a2: a1^2, b2: 2*b1}]
>
> This set being redundant, we trim it manually :
>
> S134=[S134t[u] for u in (0, 3)]
> S134
>
> [{a2: 0}, {a2: a1^2, b2: 2*b1}]
>
> Substituting these solutions in eq2 gives us a set of equations, whose 
> solutions for their variables complete the partial solutions of S134, thus 
> giving the set of solutions of the complete system :
>
> S1234=[]for s in S134:
>     E=eq2.subs(s)
>     S=flatten([E.solve(v, solution_dict=True) for v in E.variables()])
>     for s1 in S:
>         s0={u:s[u].subs(s1) if "subs" in  dir(s[u]) else s[u] for u in 
> s.keys()}
>         S1234+=[s0.copy()|s1]
> S1234
>
> [{a2: 0, a1: 0},
>  {a2: 0, b2: 0},
>  {a2: 1/324*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(I*sqrt(3) + 1) + 
> 16*(-I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)^2,
>   b2: 2*b1,
>   a1: -1/2*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(I*sqrt(3) + 1) - 
> 8/9*(-I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 4/3},
>  {a2: 1/324*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(-I*sqrt(3) + 1) + 
> 16*(I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)^2,
>   b2: 2*b1,
>   a1: -1/2*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(-I*sqrt(3) + 1) - 
> 8/9*(I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 4/3},
>  {a2: 1/81*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 
> 16/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 12)^2,
>   b2: 2*b1,
>   a1: (1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 16/9/(1/9*I*sqrt(101)*sqrt(3) 
> + 37/27)^(1/3) + 4/3},
>  {a2: 0, b2: 2*b1, a1: 0},
>  {a2: a1^2, b2: 0, b1: 0}]
>
> Let’s check these solution by substitution in the original system:
>
> Chk=[[e.subs(s) for e in Sys] for s in S1234] ; Chk
>
> [[0, 0, 0, 0],
>  [0, 0, 0, 0],
>  [0,
>   -1/104976*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(I*sqrt(3) + 1) + 
> 16*(-I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)^4*b1 - 
> 1/1458*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(I*sqrt(3) + 1) + 
> 16*(-I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)^3*b1 + 
> 1/9*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(I*sqrt(3) + 1) + 
> 16*(-I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)*b1,
>   0,
>   0],
>  [0,
>   -1/104976*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(-I*sqrt(3) + 1) + 
> 16*(I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)^4*b1 - 
> 1/1458*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(-I*sqrt(3) + 1) + 
> 16*(I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)^3*b1 + 
> 1/9*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3)*(-I*sqrt(3) + 1) + 
> 16*(I*sqrt(3) + 1)/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) - 24)*b1,
>   0,
>   0],
>  [0,
>   -1/6561*b1*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 
> 16/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 12)^4 + 
> 4/729*b1*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 
> 16/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 12)^3 - 
> 2/9*b1*(9*(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 
> 16/(1/9*I*sqrt(101)*sqrt(3) + 37/27)^(1/3) + 12),
>   0,
>   0],
>  [0, 0, 0, 0],
>  [0, 0, 0, 0]]
>
> The fly in the ointment is that once substituted, for some solutions, eq2 
> is a first-degree monomial in b1, whose coefficient is in each case 
> numerically quite close to 0 :
>
> K=[Chk[u][1].coefficient(b1) for u in range(2,5)]
> [u.n() for u in K]
>
> [6.66133814775094e-16 + 4.44089209850063e-16*I,
>  -8.88178419700125e-16 - 4.44089209850063e-16*I,
>  -2.84217094304040e-14]
>
> but cannot be proven to be 0 ([u.is_zero() for u in K] never returns).
>
> Furthermore [u.factor().n() for u in K] aborts (on Sage 9.5.beta7).
>
> But Sympy *seems* to be able to prove that these coefficients are 0 :
>
> [u._sympy_().factor()._sage_() for u in K]
>
> [0, 0, 0]
>
> Using algorithm="sympy" to get the solutions to eq2 leads to *different* 
> solutions for the quadrinomial in a1, expressed as a trigonometric 
> expression :
>
> S1234s=[]for s in S134:
>     E=eq2.subs(s)
>     S=flatten([E.solve(v, solution_dict=True, algorithm="sympy") for v in 
> E.variables()])
>     for s1 in S:
>         s0={u:s[u].subs(s1) if "subs" in  dir(s[u]) else s[u] for u in 
> s.keys()}
>         S1234s+=[s0.copy()|s1]
> S1234s
>
> [{a2: 0, a1: 0},
>  {a2: 0, b2: 0},
>  {a2: 0, b2: 2*b1, a1: 0},
>  {a2: 16/9*(2*cos(1/3*arctan(3/37*sqrt(303))) + 1)^2,
>   b2: 2*b1,
>   a1: 8/3*cos(1/3*arctan(3/37*sqrt(303))) + 4/3},
>  {a2: (-2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) + 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) + 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3)^2,
>   b2: 2*b1,
>   a1: -2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) + 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) + 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3},
>  {a2: (2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) - 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3)^2,
>   b2: 2*b1,
>   a1: 2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) - 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3},
>  {a2: a1^2, b2: 0, b1: 0}]
>
> However, these expressions lead againt to first-order monomials in b1, 
> again unprovably null :
>
> Chks=[[e.subs(s) for e in Sys] for s in S1234s] ; Chks
>
> [[0, 0, 0, 0],
>  [0, 0, 0, 0],
>  [0, 0, 0, 0],
>  [0,
>   -256/81*b1*(2*cos(1/3*arctan(3/37*sqrt(303))) + 1)^4 + 
> 256/27*b1*(2*cos(1/3*arctan(3/37*sqrt(303))) + 1)^3 - 
> 8/3*b1*(2*cos(1/3*arctan(3/37*sqrt(303))) + 1),
>   0,
>   0],
>  [0,
>   -(-2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) + 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) + 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3)^4*b1 + 
> 4*(-2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) + 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) + 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3)^3*b1 + 
> 4/9*(3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) - 
> 3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) - 
> 4*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 4*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) 
> + 37/27)^(1/3) + 4*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 4*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 3*cos(1/3*arctan(3/37*sqrt(303))) + 
> 3*I*sin(1/3*arctan(3/37*sqrt(303))) - 6)*b1,
>   0,
>   0],
>  [0,
>   -(2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) - 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3)^4*b1 + 
> 4*(2/3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) - 
> 8/9*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 
> 8/9*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 8/9*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 8/9*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 2/3*cos(1/3*arctan(3/37*sqrt(303))) - 
> 2/3*I*sin(1/3*arctan(3/37*sqrt(303))) + 4/3)^3*b1 + 
> 4/9*(-3*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303))) + 
> 3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) + 
> 4*I*sqrt(3)*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 4*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) 
> + 37/27)^(1/3) + 4*cos(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) - 4*I*sin(1/3*arctan(3/37*sqrt(303)))/abs(1/9*I*sqrt(303) + 
> 37/27)^(1/3) + 3*cos(1/3*arctan(3/37*sqrt(303))) + 
> 3*I*sin(1/3*arctan(3/37*sqrt(303))) - 6)*b1,
>   0,
>   0],
>  [0, 0, 0, 0]]
>
> Again, the numerical values are close to 0 :
>
> Ks=[Chks[u][1].coefficient(b1) for u in range(2,5)]
> [u.n() for u in Ks]
>
> [0.000000000000000, 0.000000000000000, -8.88178419700125e-16]
>
> But various attempts to prove the nullity at least partially fail :
>
> print([u._sympy_().simplify()._sage_() for u in Ks])
> print([u._sympy_().factor().simplify().is_zero for u in Ks])
>
> [0, 0, -256/81*(2*sin(1/6*pi - 1/3*arctan(3/37*sqrt(303))) - 1)^4 - 
> 256/27*(2*sin(1/6*pi - 1/3*arctan(3/37*sqrt(303))) - 1)^3 - 
> 8/3*sqrt(3)*sin(1/3*arctan(3/37*sqrt(303))) + 
> 8/3*cos(1/3*arctan(3/37*sqrt(303))) - 8/3]
> [True, True, None]
>
> For what it’s worth, Mathematica expresses its results without expressing 
> the roots of the quadrinomial, but denoting them as such roots :
>
> mathematica.Reduce([u==0 for u in Sys],[a1, a2, b1, b2])
>
> (a1 == 0 && a2 == 0) || (a2 == 0 && a1 != 0 && b2 == 0) || 
>  ((a1 == Root[2 - 4*#1^2 + #1^3 & , 1, 0] || 
>    a1 == Root[2 - 4*#1^2 + #1^3 & , 2, 0] || 
>    a1 == Root[2 - 4*#1^2 + #1^3 & , 3, 0]) && a2 == a1^2 && b2 == 2*b1) || 
>  (a2 == a1^2 && a1*(2 - 4*a1^2 + a1^3) != 0 && b1 == 0 && b2 == 0)
>
> And, curiously, Sympy left to its own devices leads to an *erroneous* 
> solution, further explored on the |Sympyn list](
> https://groups.google.com/g/sympy/c/EB_Z6h3ZRDg). 
> ​
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/50fba344-ea3c-4ed0-adf2-a7b4403f4fcan%40googlegroups.com.

Reply via email to