I am obliged to give a huge lot of command since the equations in my systems are derived. Sorry the comments are in french but they are not important; var('a x y p_x p_y D Rev R l') assume(a,'real') assume(x,'real') assume(y,'real') assume(p_x,'real') assume(p_y,'real') assume(D,'real') assume(Rev,'real') assume(R,'real') assume(l,'real') assume(l>0) #assume(a>-1) assume(a>0) assume(p_x>0) assume(p_y>0) assume(R>0) U =(1/(1-(1/a)))*x^(1-(1/a))+y show(LatexExpr(r'\text{La fonction d}^\prime\text{utilité est }U(x,y) = '),U) D= x*p_x + y*p_y show(LatexExpr(r'\text{La Dépense } D = '),D) Rev= R show(LatexExpr(r'\text{Le Revenu } Rev = '),R) L=U+l*(Rev-D) show(LatexExpr(r'\text{Le lagrangien est } \mathcal{L}(x, y, λ) = '),L) FOC = [diff(L,x),diff(L,y),diff(L,l)] show(LatexExpr(r'\text{Les condition du premier ordre sont } \left\{\begin{array}{c}\mathcal{L}_x= 0\\\mathcal{L}_y= 0\\\mathcal{L}_λ= 0\end{array}\right. ')) show(LatexExpr(r'\text{soit }')) show(LatexExpr(r'\mathcal{L}_x= 0 \Longleftrightarrow '),FOC[0]==0) show(LatexExpr(r'\mathcal{L}_y= 0 \Longleftrightarrow '),FOC[1]==0) show(LatexExpr(r'\mathcal{L}_λ= 0 \Longleftrightarrow '),FOC[2]==0) sol = solve([FOC[0]==0,FOC[1]==0,FOC[2]==0],x,y,l, algorithm="sympy") xs=sol[0][x] ys=sol[0][y] ls=sol[0][l] show(LatexExpr(r'\text{À l}\'\text{optimum, on a :}')) show(LatexExpr(r' \,\,\,\,\,\,\,\,\, x^d = '),xs) show(LatexExpr(r' \,\,\,\,\,\,\,\,\, y^d = '),ys) show(LatexExpr(r' \,\,\,\,\,\,\,\,\, \lambda^\star = '),ls) show(LatexExpr(r'\text{Si le bien } y \text{ sert de numéraire, on a : }p_y =1 \text{ et, ainsi :}')) xsn=xs.substitute(p_y=1).factor() ysn=ys.substitute(p_y=1).factor() lsn=ls.substitute(p_y=1).factor() show(LatexExpr(r' \,\,\,\,\,\,\,\,\, x^\star = '),xsn) show(LatexExpr(r' \,\,\,\,\,\,\,\,\, y^\star = '),ysn) show(LatexExpr(r' \,\,\,\,\,\,\,\,\, \lambda^\star = '),lsn) show(LatexExpr(r'\text{On a :}')) x_p=diff(xsn,p_x).simplify() show(LatexExpr(r'x_p = '),x_p,LatexExpr(r'< 0.'))var('C c') assume(c, 'real') assume(c>0) C= (1/2)*c*x^2 show(LatexExpr(r'\text{On suppose que la fonction de coût du producteur est : } C(x) ='), C) pi=(p_x *x- C) show(LatexExpr(r'\text{ Le profit est : } \pi(x) = '), pi) pip= diff(pi,x) show(LatexExpr(r'\text{ Le profit marginal est : } \pi^\prime(x) = '), pip, LatexExpr(r'( = 0\text{ à l}^\prime\text{optimum})')) pipp= diff(pi,x,2) show(LatexExpr(r'\text{ il s}^\prime\text{agit bien d}^\prime\text{un maximum puisque : } \pi^{\prime\prime}(x) = '),pipp,LatexExpr(r'<0')) prod=solve(pip==0,x)[0].rhs() show(LatexExpr(r'\text{L}^\prime\text{offre de produit est : } x^o = '),prod)Until there all is fine now I use some results from above to avaluate an equilibrium. But now it seems that maxima need to know if a certain variable is an integer (but I do not see which since I have tried to gives the more extended assumptions.I wonder if this is because my variable is p_x which is not understood by maxima ?show(LatexExpr(r'\text{L}^\prime\text{équilibre de concurrence pure et parfaite est caractérisé par le système d}^\prime\text{équations : } ')) show(LatexExpr(r'x^d = x^o')) show(LatexExpr(r'x^d = '),xsn) show(LatexExpr(r'x^o = '),prod) pem= solve(xsn==prod, p_x)[0].rhs() show(LatexExpr(r'\text{Le prix d}^\prime\text{équilibre du marché est : } p_x^E = '),pem) qem = prod.subs(p_x=pem).simplify() show(LatexExpr(r'\text{La quantité d}^\prime\text{équilibre du marché est : } q^E = '),qem)Also I need the inverse function of 'xsn' (look just above) as a function of x. I have tried many thing found here and there but even if some times I have the good result it is not considered as a function.Thanks for help
-- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/1091423200.6245539.1638295441317.JavaMail.zimbra%40univ-orleans.fr.