This can be computed “by hand” using (one of) the textbook definition(s) :
sage: var("omega, s") (omega, s) sage: integrate(sin(x^2)*e^(-I*s*x), x, -oo, oo) 1/2*sqrt(2)*sqrt(pi)*cos(1/4*s^2) - 1/2*sqrt(2)*sqrt(pi)*sin(1/4*s^2) Both sympy and giac have implementations of this transform : sage: from sympy import fourier_transform, sympify sage: fourier_transform(*map(sympify, (sin(x^2),x, s)))._sage_() 1/2*sqrt(2)*sqrt(pi)*(cos(pi^2*s^2) - sin(pi^2*s^2)) sage: libgiac.fourier(*map(lambda u:u._giac_(), (sin(x^2), x, s))).sage() 1/2*sqrt(2)*sqrt(pi)*(cos(1/4*s^2) - sin(1/4*s^2)) which do not follow the same definitions… But beware : they may be more or less wrong : sage: integrate(sin(x)*e^(-I*s*x), x, -oo, oo).factor() undef # Wrong sage: fourier_transform(*map(sympify, (sin(x),x, s)))._sage_() 0 # Wrong AND misleading sage: libgiac.fourier(*map(lambda u:u._giac_(), (sin(x), x, s))).sage() I*pi*dirac_delta(s + 1) - I*pi*dirac_delta(s - 1) # Better... BTW: sage: mathematica.FourierTransform(sin(x^2), x, s).sage().factor() 1/2*cos(1/4*s^2) - 1/2*sin(1/4*s^2) sage: mathematica.FourierTransform(sin(x), x, s).sage().factor() -1/2*I*sqrt(2)*sqrt(pi)*(dirac_delta(s + 1) - dirac_delta(s - 1)) HTH, Le dimanche 23 mai 2021 à 03:22:06 UTC+2, hongy...@gmail.com a écrit : > It seems that all the Fourier transform methods implemented in sagemath is > numeric, instead of symbolic/analytic. > > I want to know whether there are some symbolic/analytic Fourier transform > functions, just as we can do in mathematica, in sagemath? > > I want to know if there are some symbolic/analytical Fourier transform > functions available in sagemath, just as the ones in mathematica? > > Regards, > HY > > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/2ae26d1a-b7b6-42a8-8ccd-8b2c4df3e291n%40googlegroups.com.