If I compute the Bach Tensor using the definition via the cotton tensor I get a different result to that using an alternative definition.
M = Manifold(4, 'M') MChart = M.open_subset('MChart') Chart.<u,v,x,y> = MChart.chart(r'u:(-oo,+oo) v:(-oo,+oo) x:(-oo,+oo) y:(-oo,+oo)') gT= MChart.riemannian_metric('gT') var('du','dv','dx','dy') dsds= -du*dv+dx*dx+dy*dy+e^(x*y)*du*du dsds=dsds.expand() g00=dsds.coefficient(du,2) g11=dsds.coefficient(dv,2) g22=dsds.coefficient(dx,2) g33=dsds.coefficient(dy,2) g01=dsds.coefficient(du*dv,1) g01=g01/2 g10=g01 gT[0,0] = g00.factor() #du du gT[1,1] = g11.factor() #dv dv gT[2,2] = g22.factor() #dx dx gT[3,3] = g33.factor() #dy dy gT[0,1] = g01.factor() #du dv %display latex show(gT.display()) Metric=gT Nabla = Metric.connection() #https://arxiv.org/pdf/gr-qc/0309008.pdf equation 54 Bach=(Nabla(Metric.cotton()).up(Metric,3)['^u_aub'])+((Metric.schouten().up(Metric))*(Metric.weyl().down(Metric)))['^uv_aubv'] Bach.display() This gives: 1/2*(x^4 + 2*x^2*y^2 + y^4 + 8*x*y + 4)*e^(x*y) du*du But Bach=Nabla(Nabla(Metric.weyl().down(Metric))).up(Metric,4).up(Metric,5)['^bd_abcd']-(1/2)*((Metric.ricci().up(Metric))*(Metric.weyl().down(Metric)))['^bd_abcd'] Bach.display() Gives: -1/4*(x^4 + 2*x^2*y^2 + y^4 + 8*x*y + 4)*e^(x*y) du*du This agrees with the Maple example Bach Tensor computation at. https://www.maplesoft.com/support/help/Maple/view.aspx?path=DifferentialGeometry/Tensor/BachTensor -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/3321d4ef-b712-47bb-a501-edcabead339e%40googlegroups.com.
BachTensor.ipynb
Description: Binary data