If I compute the Bach Tensor using the definition via the cotton tensor I 
get a different result to that using an alternative definition.

M = Manifold(4, 'M')
MChart = M.open_subset('MChart')
Chart.<u,v,x,y>   = MChart.chart(r'u:(-oo,+oo) v:(-oo,+oo) x:(-oo,+oo) 
y:(-oo,+oo)') 

gT= MChart.riemannian_metric('gT')
var('du','dv','dx','dy')

dsds= -du*dv+dx*dx+dy*dy+e^(x*y)*du*du


dsds=dsds.expand()
g00=dsds.coefficient(du,2)
g11=dsds.coefficient(dv,2)
g22=dsds.coefficient(dx,2)
g33=dsds.coefficient(dy,2)
g01=dsds.coefficient(du*dv,1)
g01=g01/2
g10=g01

gT[0,0] = g00.factor() #du du
gT[1,1] = g11.factor() #dv dv
gT[2,2] = g22.factor() #dx dx
gT[3,3] = g33.factor() #dy dy
gT[0,1] = g01.factor() #du dv 
%display latex
show(gT.display())

Metric=gT

Nabla = Metric.connection()

#https://arxiv.org/pdf/gr-qc/0309008.pdf equation 54
Bach=(Nabla(Metric.cotton()).up(Metric,3)['^u_aub'])+((Metric.schouten().up(Metric))*(Metric.weyl().down(Metric)))['^uv_aubv']

Bach.display()

This gives: 1/2*(x^4 + 2*x^2*y^2 + y^4 + 8*x*y + 4)*e^(x*y) du*du

But 

Bach=Nabla(Nabla(Metric.weyl().down(Metric))).up(Metric,4).up(Metric,5)['^bd_abcd']-(1/2)*((Metric.ricci().up(Metric))*(Metric.weyl().down(Metric)))['^bd_abcd']
 
Bach.display()

Gives: -1/4*(x^4 + 2*x^2*y^2 + y^4 + 8*x*y + 4)*e^(x*y) du*du

This agrees with the Maple example Bach Tensor computation at. 
https://www.maplesoft.com/support/help/Maple/view.aspx?path=DifferentialGeometry/Tensor/BachTensor

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/3321d4ef-b712-47bb-a501-edcabead339e%40googlegroups.com.

Attachment: BachTensor.ipynb
Description: Binary data

Reply via email to