On Tue, Apr 7, 2020 at 2:29 AM Fernando Gouvea <fqgou...@colby.edu> wrote:
>
> I'm working with ideals in the polynomial ring in three variables.
>
> sage> R.<u,v,w>=QQ[]
> sage> f=u*v-w
> sage> g=u^2-v
> sage> I=Ideal(f,g)
> sage> I.is_prime()
>     True
> sage> I.associated_primes()
>     [Ideal (v^2 - u*w, u*v - w, u^2 - v) of Multivariate Polynomial Ring in 
> u, v, w over Rational Field]
>
> That last ideal is the same as I, since u(uv - w) - v(u^2-v) = v^2-uw. So why 
> do I get an extra generator?

I think that it's a Groebner basis (w.r.t. the default monomial
ordering) of the ideal in question.

>
> Thanks,
>
> Fernando
>
>
> --
>
> =============================================================
> Fernando Q. Gouvea         http://www.colby.edu/~fqgouvea
> Carter Professor of Mathematics
> Dept. of Mathematics and Statistics
> Colby College
> 5836 Mayflower Hill
> Waterville, ME 04901
>
> So if a man's wit be wandering,let him study the mathematics; for in
> demonstrations, if his wit be called away never so little, he must
> begin again.
>   -- Francis Bacon, "Of Studies"
>
> --
> You received this message because you are subscribed to the Google Groups 
> "sage-support" group.
> To unsubscribe from this group and stop receiving emails from it, send an 
> email to sage-support+unsubscr...@googlegroups.com.
> To view this discussion on the web visit 
> https://groups.google.com/d/msgid/sage-support/1f24f76e-7925-adbe-8e05-5648babaef4c%40colby.edu.

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-support/CAAWYfq0Uu7tuV2irUYk8j6Zhv77C%2BhS64aYSe7babXOxpD%2B2Tg%40mail.gmail.com.

Reply via email to