Here is my script: print("Initialization of manifold, chart, and metric. Definitions of constants.") M=Manifold(4,'M',structure='Lorentzian') X.<t,r,th,ph> = M.chart(r"t r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi")
(m,L,A,alpha,beta,r,th)=var('m,L,A,alpha,beta,r,th') def G(r): return 1-alpha*(1-exp(-beta*m/(alpha*r^3))) g=M.metric() g[0,0]=-(1-2*m*r^4/(r^3+2*m*L^2)/(r^2+A^2*cos(th)^2))*G(r) g[0,3]=-2*A*m*r^4/(r^3+2*m*L^2)*sin(th)^2/(r^2+A^2*cos(th)^2)*G(r) g[3,0]=g[0,3] g[1,1]=(r^2+A^2*cos(th)^2)/(r^2-2*m*r^4/(r^3+2*m*L^2)+A^2) g[2,2]=r^2+A^2*cos(th)^2 g[3,3]=sin(th)^2*(r^2+A^2+2*A^2*m*r^4*sin(th)^2/(r^3+2*m*L^2)/(r^2+A^2*cos(th)^2))*G(r) print('Calculating Riemann tensor') R=g.riemann() print('Calculating Kretschmann scalar') dR=R.down(g) uR=R.up(g) kr=uR['^{abcd}']*dR['_{abcd}'] print('Plot Kretschmann scalar') maxima.plot3d(kr.expr().subs(m=10,L=1,A=6,alpha=2,beta=4),[r,0,3],[th,0,3.14]); print("Limit at the origin of the Kretschmann scalar from theta=0") print(limit(limit(kr.expr().subs(m=10,L=1,A=6,alpha=2,beta=4),th=0),r=0)) print("Limit at the origin of the Kretschmann scalar from theta=pi") print(limit(limit(kr.expr().subs(m=10,L=1,A=6,alpha=2,beta=4),th=pi),r=0)) Il giorno venerdì 20 dicembre 2019 11:11:46 UTC+1, Jori Mäntysalo (TAU) ha scritto: > > On Thu, 19 Dec 2019, Mattia Villani wrote: > > > Condition of type: STORAGE-EXHAUSTED > > > Changing the program problably is not the solution, since I am > calculating > > the Kretschmann scalar of a metric, which is the square of the curvature > > What function are you using? For example SageMath contains Maxima and one > can increase it's stack size by > > maxima._eval_line(":lisp (ext:set-limit 'ext:heap-size 1000000)", > wait_for_prompt=False) > > but propably you use some other part of Sage. > > -- > Jori Mäntysalo > > Tampereen yliopisto - Ihminen ratkaisee -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/80bdb9fd-83f8-4257-a48d-7b2e2fef035a%40googlegroups.com.